Skip to main content

Advertisement

Log in

Synthesis, Characterization, and Potential Applications of Transition Metal Nanoparticles

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In recent decades, the industrial use of nanoparticles (NPs) and, especially, metal nanoparticles (MNPs), has attracted widespread attention because of their special physicochemical properties. The ability of MNPs to self-arrange into ordered, nanometrically sized structures and form nanometric colloids has enabled their use as nanocatalysts the properties of which can be tailored through ordered growth of their crystal structures. In fact, these nanocatalysts provide a unique opportunity to tune material properties at the nanometric scale. Thus, altering the size or shape of the nanoparticles allows materials of identical composition but different properties to be obtained. The versatility of MNPs (and, especially, those containing the transition metals copper, nickel and palladium) led us to review their synthetic procedures, most salient physicochemical properties, and existing and potential applications (chemical sensing and plasmon resonance included).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.P. Feynman, Engineering and Science, “There is plenty of room at the bottom”, Annual Meeting of the American Physical Society (1960)

  2. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163–166 (1974). https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  3. D.L. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. 84, 1–20 (1977). https://doi.org/10.1016/S0022-0728(77)80224-6

    Article  CAS  Google Scholar 

  4. M. Grant Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99(15), 5215–5217 (1977). https://doi.org/10.1021/ja00457a071

    Article  Google Scholar 

  5. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667–1670 (1997). https://doi.org/10.1103/PhysRevLett.78.1667

    Article  CAS  Google Scholar 

  6. Nie, S.R. Emory, Science 275(5303), 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102

    Article  CAS  PubMed  Google Scholar 

  7. K. Faulds, W.E. Smith, D. Graham, Anal. Chem. 76, 412–417 (2004). https://doi.org/10.1021/ac035060c

    Article  CAS  PubMed  Google Scholar 

  8. S.E.J. Bell, N.M.S. Sirimuthu, J. Am. Chem. Soc. 128, 15580–15581 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, K. Murakoshi, J. Am. Chem. Soc. 129(6), 1658–1662 (2007). https://doi.org/10.1021/ja067034c

    Article  CAS  PubMed  Google Scholar 

  10. H. Ko, V.V. Tsukruk, Small 4, 1980–1984 (2008). https://doi.org/10.1002/smll.200800301

    Article  CAS  PubMed  Google Scholar 

  11. K. Yoshida, T. Itoh, V. Biju, M. Ishikawa, Y. Ozaki, Phys. Rev. B: Condens. Matter Mater. Phys. 79, 085419 (2009). https://doi.org/10.1103/PhysRevB.79.085419

    Article  CAS  Google Scholar 

  12. Y. Yokota, K. Ueno, H. Misawa, Small 7, 252–258 (2011). https://doi.org/10.1002/smll.201001560

    Article  CAS  PubMed  Google Scholar 

  13. Y. Yokota, K. Ueno, H. Misawa, Chem. Commun. 47, 3505–3507 (2011). https://doi.org/10.1039/C0CC05320A

    Article  CAS  Google Scholar 

  14. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.H. Chang, S.K. Gray, G.P. Wiederrecht, G.C. Schatz, Nano Lett. 5, 615–619 (2005). https://doi.org/10.1021/nl047956i

    Article  CAS  PubMed  Google Scholar 

  15. H. El Ahrach, R. Bachelot, A. Vial, G. Lerondel, J. Plain, P. Royer, O. Soppera, Phys. Rev. Lett. 98, 107402 (2007). https://doi.org/10.1103/PhysRevLett.98.107402

    Article  CAS  PubMed  Google Scholar 

  16. K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, H. Misawa, J. Am. Chem. Soc. 130, 6928–6929 (2008). https://doi.org/10.1021/ja801262r

    Article  CAS  PubMed  Google Scholar 

  17. Y. Tsuboi, R. Shimizu, T. Shoji, N. Kitamura, J. Am. Chem. Soc. 131, 12623–12627 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, H. Misawa, J. Phys. Chem. C 113, 1147–1149 (2009)

    Article  CAS  Google Scholar 

  19. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, H. Misawa, J. Phys. Chem. C 113(27), 11720–11724 (2009). https://doi.org/10.1021/jp901773k

    Article  CAS  Google Scholar 

  20. K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, H. Misawa, J. Phys. Chem. Lett. 1(3), 657–662 (2010). https://doi.org/10.1021/jz9002923

    Article  CAS  Google Scholar 

  21. T. Geldhauser, S. Ikegaya, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, H. Misawa, Plasmonics 6, 207–212 (2011). https://doi.org/10.1007/s11468-010-9189-9

    Article  CAS  Google Scholar 

  22. T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, H. Misawa, Langmuir 28(24), 9041–9046 (2012). https://doi.org/10.1021/la300219w

    Article  CAS  PubMed  Google Scholar 

  23. Y. Tian, T. Tatsuma, J. Am. Chem. Soc. 127(20), 7632–7637 (2005). https://doi.org/10.1021/ja042192u

    Article  CAS  PubMed  Google Scholar 

  24. K. Awazu, M. Fujimake, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 130(5), 1676–1680 (2008). https://doi.org/10.1021/ja076503n

    Article  CAS  PubMed  Google Scholar 

  25. E. Kowalska, R. Abe, B. Ohtani, Chem. Commun. 2, 241–243 (2009). https://doi.org/10.1039/b815679d

    Article  CAS  Google Scholar 

  26. P. Christopher, D.B. Ingram, S. Linic, J. Phys. Chem. C 114(19), 9173–9177 (2010). https://doi.org/10.1021/jp101633u

    Article  CAS  Google Scholar 

  27. X. Zhou, C. Hu, X. Hu, T. Peng, J. Qu, J. Phys. Chem. C 114(6), 2746–2750 (2010). https://doi.org/10.1021/jp909697k

    Article  CAS  Google Scholar 

  28. A. Primo, A. Corma, H. García, Phys. Chem. Chem. Phys. 13, 886–910 (2011). https://doi.org/10.1039/C0CP00917B

    Article  CAS  PubMed  Google Scholar 

  29. M.K. Kumar, S. Krishnamoorthy, L.K. Tan, S.Y. Chiam, S. Tripathy, H. Gao, ACS Catal. 1(4), 300–308 (2011). https://doi.org/10.1021/cs100117v

    Article  CAS  Google Scholar 

  30. C.G. Silva, R. Juárez, T. Marino, R. Molinari, H. García, J. Am. Chem. Soc. 133(3), 595–602 (2011). https://doi.org/10.1021/ja1086358

    Article  CAS  PubMed  Google Scholar 

  31. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Nano Lett. 11(3), 1111–1116 (2011). https://doi.org/10.1021/nl104005n

    Article  CAS  PubMed  Google Scholar 

  32. D.B. Ingram, S. Linic, J. Am. Chem. Soc. 133(14), 5202–5205 (2011). https://doi.org/10.1021/ja200086g

    Article  CAS  PubMed  Google Scholar 

  33. A. Primo, T. Marino, A. Corma, R. Molinari, H. Garcıía, J. Am. Chem. Soc. 133(18), 6930–6933 (2011). https://doi.org/10.1021/ja2011498

    Article  CAS  PubMed  Google Scholar 

  34. Y. Nishijima, K. Ueno, Y. Kotake, K. Murakoshi, H. Inoue, H. Misawa, J. Phys. Chem. Lett. 3(10), 1248–1252 (2012). https://doi.org/10.1021/jz3003316

    Article  CAS  PubMed  Google Scholar 

  35. T.K. Sau, A.L. Rogach, Adv. Mater. 22(16), 1781–1804 (2010). https://doi.org/10.1002/adma.200901271

    Article  CAS  PubMed  Google Scholar 

  36. P. Colbon, J. Ruan, M. Purdie, J. Xiao. Org. Lett. 12, 3670–3673 (2010). https://doi.org/10.1021/ol101466g

    Article  CAS  Google Scholar 

  37. G. Maiti, U. Kayal, R. Karmakar, R.N. Bhattacharya, Tetrahedron Lett. 53, 6321–6325 (2012). https://doi.org/10.1016/j.tetlet.2012.08.117

    Article  CAS  Google Scholar 

  38. R.J. Lewis Sr. (ed.), Hawley’s Condensed Chemical Dictionary, vol. 834, 13th edn. (Wiley, New York, 1997)

    Google Scholar 

  39. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 81st edn. (CRC Press LLC, Boca Raton, 2000), pp. 4–77

    Google Scholar 

  40. International Labour Office, Encyclopedia of Occupational Health and Safety, vol. I & II (International Labour Office, Geneva, 1983)

    Google Scholar 

  41. C. Langhammer, E.M. Larsson, B. Kasemo, I. Zoric, Nano Lett. 10, 3529–3538 (2010). https://doi.org/10.1021/nl101727b

    Article  CAS  PubMed  Google Scholar 

  42. J.-W. Hu, Y. Zhang, J.-F. Li, Z. Liu, B. Ren, S.-G. Sun, Z.-Q. Tian, T. Lian, Chem. Phys. Lett. 408, 354–359 (2005). https://doi.org/10.1016/j.cplett.2005.04.071

    Article  CAS  Google Scholar 

  43. J. Chai, F. Li, Y. Hu, Q. Zhang, D. Han, L. Niu, J. Mater. Chem. 21, 17922 (2011). https://doi.org/10.1039/c1jm13631c

    Article  CAS  Google Scholar 

  44. X. Huang, S. Tang, B. Liu, B. Re, N. Zheng, Adv. Mater. 23, 3420–3425 (2011). https://doi.org/10.1002/adma.201100905

    Article  CAS  PubMed  Google Scholar 

  45. R. Pina-Zapardiel, I. Montero, A. Esteban-Cubillo, J.S. Moya, W.D. Kaplan, T. Paramasivam, C. Pecharromán, J. Nanopart. Res. 13, 5239–5249 (2011). https://doi.org/10.1007/s11051-011-0508-7

    Article  CAS  Google Scholar 

  46. L. Cui, A. Wang, D.-Y. Wu, B. Ren, Z.-Q. Tian, J. Phys. Chem. C 112, 17618–17624 (2008)

    Article  CAS  Google Scholar 

  47. Y.L. Lee, M. Kim, Z.H. Kim, S.W. Han, J. Am. Chem. Soc. 131(47), 17036–17037 (2009). https://doi.org/10.1021/ja905603p

    Article  CAS  PubMed  Google Scholar 

  48. D. Jana, A. Dandapat, G. De, J. Phys. Chem. C 113, 9101–9107 (2009). https://doi.org/10.1021/jp810673x

    Article  CAS  Google Scholar 

  49. M.S. Bakshi, J. Phys. Chem. C 113, 10921–10928 (2009). https://doi.org/10.1021/jp9019624

    Article  CAS  Google Scholar 

  50. C. Langhammer, Z. Yuan, I. Zoric, B. Kasemo, Nano Lett. 6(4), 833–838 (2006). https://doi.org/10.1021/nl060219x

    Article  CAS  PubMed  Google Scholar 

  51. T. Pakizeh, C. Langhammer, I. Zoric, P. Apell, M. Kall, Nano Lett. 9(2), 882–886 (2009). https://doi.org/10.1021/nl803794h

    Article  CAS  PubMed  Google Scholar 

  52. Y. Xiong, H. Cai, B.J. Wiley, J. Wang, M.J. Kim, Y. Xia, J. Am. Chem. Soc. 129(12), 3665–3675 (2007). https://doi.org/10.1021/ja0688023

    Article  CAS  PubMed  Google Scholar 

  53. Y. Xiong, J. Chen, B. Wiley, Y. Xia, J. Am. Chem. Soc. 127(20), 7332–7333 (2005). https://doi.org/10.1021/ja0513741

    Article  CAS  PubMed  Google Scholar 

  54. Y. Xiong, J.M. McLellan, J. Chen, Y. Yin, Z.-Y. Li, Y. Xia, J. Am. Chem. Soc. 27(48), 17118–17127 (2005). https://doi.org/10.1021/ja056498s

    Article  CAS  Google Scholar 

  55. C. Langhammer, I. Zoric, B. Kasemo, Nano Lett. 7, 3112–3127 (2007). https://doi.org/10.1021/nl071664a

    Article  CAS  Google Scholar 

  56. Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, Z.-Y. Li, Nano Lett. 5, 1242 (2005). https://doi.org/10.1021/nl0508826

    Article  CAS  Google Scholar 

  57. Y. Xiong, I. Washio, J. Chen, H. Cai, Z.-Y. Li, Y. Xia, Langmuir 22, 8563–8570 (2006). https://doi.org/10.1021/la061323x

    Article  CAS  PubMed  Google Scholar 

  58. P. Tobisˇka, O. Hugon, A. Trouillet, H. Gagnaire, Sens. Actuators, B 74, 168–172 (2001). https://doi.org/10.1016/S0925-4005(00)00728-0

    Article  Google Scholar 

  59. Y. Sun, Z. Tao, J. Chen, T. Herricks, Y. Xia, J. Am. Chem. Soc. 126, 5940–5941 (2004). https://doi.org/10.1021/ja0495765

    Article  CAS  PubMed  Google Scholar 

  60. W. Niu, Z.-Y. Li, L. Shi, X. Liu, H. Li, S. Han, J. Chen, G. Xu, Cryst Growth 12, 4440–4444 (2008). https://doi.org/10.1021/cg8002433

    Article  CAS  Google Scholar 

  61. Z. Wei, H. Matsui, Nat. Commun. 5, 3870 (2014). https://doi.org/10.1038/ncomms4870

    Article  CAS  PubMed  Google Scholar 

  62. L.A. Padilha et al., Acc. Chem. Res. 46, 1261–1269 (2013). https://doi.org/10.1021/ar300228x

    Article  CAS  PubMed  Google Scholar 

  63. H. Li et al., J. Am. Chem. Soc. 135, 12270–12278 (2013). https://doi.org/10.1021/ja404694k

    Article  CAS  PubMed  Google Scholar 

  64. Y. Xia, X. Xia, Y. Wang, S. Xie, MRS Bull. 38, 335–344 (2013). https://doi.org/10.1557/mrs.2013.84

    Article  CAS  Google Scholar 

  65. L. Rodríguez-Lorenzo, R. de la Rica, R.A. Álvarez-Puebla, L.M. Liz-Marzán, M.M. Stevens, Nat. Mater. 11, 604–607 (2012). https://doi.org/10.1038/NMAT3337

    Article  PubMed  Google Scholar 

  66. J.E. Macdonald, M. Bar Sadan, L. Houben, I. Popov, U. Banin, Nat. Mater. 9, 810–815 (2010). https://doi.org/10.1038/nmat2848

    Article  CAS  PubMed  Google Scholar 

  67. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. Engl. 48(1), 60–103 (2009). https://doi.org/10.1002/anie.200802248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. M.H. Oh, Y. Taekyung, Y. Seung-Ho, L. Byungkwon, K. Kyung-Tae et al., Science 340, 964–968 (2013). https://doi.org/10.1126/science.1234751

    Article  CAS  PubMed  Google Scholar 

  69. A. Mohanty, N. Garg, R. Jin, Angew. Chem. Int. Ed. 49, 4962–4966 (2010). https://doi.org/10.1002/anie.20100090

    Article  CAS  Google Scholar 

  70. G. Cao, Y. Wang, Nanostructures & Nanomaterials Synthesis, Properties & Applications (Imperial College Press, London, 2004). ISBN: 978-981-4322-50-8

  71. X. Huang, Y. Li, Y. Chen, E. Zhou, Y. Xu, H. Zhou, X. Duan, Y. Huang, Angew. Chem. Int. Ed. 52, 2520–2524 (2013). https://doi.org/10.1002/anie.201208901

    Article  CAS  Google Scholar 

  72. A. Fihri, M. Bouhrara, B. Nekoueishahraki, J.-M. Basset, V. Polshettiwar, Chem. Soc. Rev. 40, 5181–5203 (2011). https://doi.org/10.1039/C1CS15079K

    Article  CAS  PubMed  Google Scholar 

  73. D.B. Pacardo, M. Sethi, S.E. Jones, R.R. Naik, M.R. Knecht, ACS Nano 3, 1288–1296 (2009). https://doi.org/10.1021/nn9002709

    Article  CAS  PubMed  Google Scholar 

  74. W. Niu, L. Zhang, G. Xu, ACS Nano 4(4), 1987–1996 (2010). https://doi.org/10.1021/nn100093y

    Article  CAS  PubMed  Google Scholar 

  75. X. Xie, G. Gao, Z. Pan, T. Wang, X. Meng, L. Cai, Sci. Rep. 5, 8515 (2015). https://doi.org/10.1038/srep08515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. S.R. Chowdhury, P.S. Roy, S.K. Bhattacharya, Nano Struct. Nano Objects 14, 11–18 (2018). https://doi.org/10.1016/j.nanoso.2018.01.004

    Article  CAS  Google Scholar 

  77. F. Wang, C. Li, L.-D. Sun, C.-H. Xu, J. Wang, J.C. Yu, C.-H. Yan, Angew. Chem. Int. Ed. 51, 4872–4876 (2012). https://doi.org/10.1002/anie.201107376

    Article  CAS  Google Scholar 

  78. M.S. Maung, T. Dinh, C. Salazar, Y.-S. Shon, Colloids Surf. A: Physicochem. Eng. Asp. 513, 367–372 (2017). https://doi.org/10.1016/j.colsurfa.2016.10.067

    Article  CAS  Google Scholar 

  79. M.M. Kumari, S.A. Aromal, D. Philip, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 103, 130–133 (2013). https://doi.org/10.1016/j.saa.2012.11.020

    Article  CAS  Google Scholar 

  80. L. Qiu, R. McCaffrey, Y. Jin, Y. Gong, Y. Hu, H. Sun, W. Park, W. Zhang, Chem. Sci. 9, 676 (2018). https://doi.org/10.1039/c7sc03148c

    Article  CAS  PubMed  Google Scholar 

  81. R. McCaffrey, H. Long, Y. Jin, A. Sanders, W. Park, W. Zhang, J. Am. Chem. Soc. 136, 1782 (2014)

    Article  CAS  PubMed  Google Scholar 

  82. M.E. King, M.L. Personick, Nanoscale 9, 17914–17921 (2017). https://doi.org/10.1039/C7NR06969C

    Article  CAS  PubMed  Google Scholar 

  83. R. Long, K. Mao, X. Ye, W. Yan, Y. Huang, J. Wang, Y. Fu, X. Wang, X. Wu, Y. Xie, Y. Xiong, J. Am. Chem. Soc. 135, 3200–3207 (2013). https://doi.org/10.1021/ja311739v

    Article  CAS  PubMed  Google Scholar 

  84. B. Li, R. Long, X. Zhong, Y. Bai, Z. Zhu, X. Zhang, M. Zhi, J. He, C. Wang, Z.-Y. Li, Y. Xiong, Small 8(11), 1710–1716 (2012). https://doi.org/10.1002/smll.201200243

    Article  CAS  PubMed  Google Scholar 

  85. T.C. Narayan, A. Baldi, A.L. Koh, R. Sinclair, J.A. Dionne, Nat. Mater. 15, 768–774 (2016). https://doi.org/10.1038/NMAT4620

    Article  CAS  PubMed  Google Scholar 

  86. M. Wojnicki, K. Fitzner, M. Luty-Błocho, J. Colloid Interface Sci. 465, 190–199 (2016). https://doi.org/10.1016/j.jcis.2015.11.066

    Article  CAS  PubMed  Google Scholar 

  87. M. Wojnicki, K. Pacławski, E. Rudnik, K. Fitzner, Hydrometallurgy 110(1–4), 56–61 (2011). https://doi.org/10.1016/j.hydromet.2011.08.006

    Article  CAS  Google Scholar 

  88. M. Wu, M. Li, X. Wu, Y. Li, J. Zeng, S. Liao, J. Power Sources 294, 556–561 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.132

    Article  CAS  Google Scholar 

  89. B. Veisz, Z. Király, Langmuir 19(11), 4817–4824 (2003). https://doi.org/10.1021/la034146y

    Article  CAS  Google Scholar 

  90. A. Zhang et al., J. Mater. Chem. A 2, 1369–1374 (2014). https://doi.org/10.1039/C3TA14299J

    Article  CAS  Google Scholar 

  91. Y. Sun, L. Zhang, H. Zhou, Y. Zhu et al., Chem. Mater. 19(8), 2065–2070 (2007). https://doi.org/10.1021/cm0623209

    Article  CAS  Google Scholar 

  92. B.R. Cuenya, Thin Solid Film 518, 3127–3150 (2010). https://doi.org/10.1016/j.tsf.2010.01.018

    Article  CAS  Google Scholar 

  93. J. Zhang, Q. Christopher, Q. Lang, Mater. Lett. 62, 1521–1524 (2008)

    Article  CAS  Google Scholar 

  94. S. Ayyappan, G.N. Subbanna, R.S. Gopalan, C.N.R. Rao, Solid State Ion. 84, 271–281 (1996)

    Article  CAS  Google Scholar 

  95. T.O. Ely, C. Amiens, B. Chaudret, E. Snoeck, M. Verelst, M. Respaud, J.M. Broto, Chem. Mater. 11, 526–529 (1999)

    Article  CAS  Google Scholar 

  96. C. Castro, A. Millan, F. Palacio, J. Mater. Chem. 10, 1945–1947 (2000)

    Article  CAS  Google Scholar 

  97. N. Cordente, M. Respaud, F. Senocq, M.J. Casanove, C. Amiens, B. Chaudert, Nano Lett. 1, 565–568 (2001)

    Article  CAS  Google Scholar 

  98. Ch. Damle, M. Sastry, J. Mater. Chem. 12, 1860–1864 (2002)

    Article  CAS  Google Scholar 

  99. D.H. Chen, S.H. Hsieh, Chem. Mater. 12, 1354–1360 (2000)

    Article  CAS  Google Scholar 

  100. G. Cárdenas, J. Acuña, J. Colloid Polym. Sci. 279, 442–448 (2001)

    Article  Google Scholar 

  101. I. Capek, Adv. Colloid Interface Sci. 110, 49–74 (2004)

    Article  CAS  PubMed  Google Scholar 

  102. D.-H. Chen, C.-H. Hsieh, J. Mater. Chem. 12, 2412–2415 (2002)

    Article  CAS  Google Scholar 

  103. M. Boutonnet, S. Lögdberg, E.E. Svensson, Curr. Op. Colloid Interface Sci. 13, 270–286 (2008)

    Article  CAS  Google Scholar 

  104. Y. Hou, S. Gao, J. Mater. Chem. 13, 1510–1512 (2003)

    Article  CAS  Google Scholar 

  105. S. Carenco, C. Boissiere, L. Nicole, C. Sanchez, P. Le Floch, N. Mezailles, Chem. Mater. 22, 1340–1349 (2010)

    Article  CAS  Google Scholar 

  106. S.-H. Wu, D.-H. Chen, J. Colloid Interface Sci. 259, 282–286 (2003)

    Article  CAS  PubMed  Google Scholar 

  107. H. Wang, X. Jiao, D. Chen, J. Phys. Chem. C 112, 18793–18797 (2008)

    Article  CAS  Google Scholar 

  108. G.M. Sando, A.D. Berry, J.C. Owrutsky, J. Chem. Phys. 127, 074705 (2007)

    Article  CAS  PubMed  Google Scholar 

  109. B.M.I. van der Zande, M.R. Böhmer, L.G.J. Fokkink, C. Schönenberger, Langmuir 16, 451–458 (2000). https://doi.org/10.1021/la9900425

    Article  CAS  Google Scholar 

  110. E. Deepa, H.A. Therese, Appl. Surf. Sci. 499, 48–54 (2017). https://doi.org/10.1016/j.apsusc.2017.12.176

    Article  CAS  Google Scholar 

  111. O.A. Logutenko, A.I. Titkov, A.M. Vorob’yov, D.A. Balaev, K.A. Shaikhutdinov, S.V. Semenov, Y.M. Yukhin, N.Z. Lyakhov, Eur. Pol. J. 99, 102–110 (2018). https://doi.org/10.1016/j.eurpolymj.2017.12.017

    Article  CAS  Google Scholar 

  112. R. Das, S.S. Nath, R. Bhattacharjee, J. Lumin. 131, 2703–2706 (2011)

    Article  CAS  Google Scholar 

  113. M. Alsawafta, S. Badilescu, M. Packirisamy, V.-V. Truong, Reac. Kinet. Mech. Cat. 104, 437–450 (2011)

    Article  CAS  Google Scholar 

  114. M. Singh, I. Sinha, M. Premkumarc, A.K. Singhc, R.K. Mandal, Colloid Surf. A: Physicochem. Eng. Asp. 513, 367–372 (2016)

    Google Scholar 

  115. O. Masala, R. Seshadri, Annu. Rev. Mater. Res. 34, 41–81 (2004)

    Article  CAS  Google Scholar 

  116. J. Hambrock, R. Becker, A. Birkner, J. Weib, R.A. Fischer, Chem. Commun. 1, 68–69 (2002)

    Article  CAS  Google Scholar 

  117. S.-Y. Xie, Z.-J. Ma, C.-F. Wang, S.-C. Lin, Z.-Y. Jiang, R.-B. Huang, L.-S. Zheng, J. Solid State Chem. 177, 3743–3747 (2004)

    Article  CAS  Google Scholar 

  118. P.K. Khanna, P. More, J. Jawalkar, Y. Patil, N.K. Rao, J. Nanopart. Res. 11, 793–799 (2009)

    Article  CAS  Google Scholar 

  119. P.K. Khanna, S. Gaikwad, P.V. Adhyapak, N. Singh, R. Marimuthu, Mater. Lett. 61, 4711–4714 (2007)

    Article  CAS  Google Scholar 

  120. D.B. Pedersen, S. Wang, J. Phys. Chem. C 111, 17493–17499 (2007)

    Article  CAS  Google Scholar 

  121. D.B. Pedersen, S. Wang, M.F. Paige, A.F.G. Leontowich, J. Phys. Chem. C 111(15), 5592–5598 (2007)

    Article  CAS  Google Scholar 

  122. D.B. Pedersen, S. Wang, J. Phys. Chem. C 111, 1261–1267 (2007)

    Article  CAS  Google Scholar 

  123. B.J. Messinger, K.U. von Raben, R.K. Chang, P.W. Barber, Phys. Rev. B 24(2), 649–657 (1981)

    Article  CAS  Google Scholar 

  124. G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Nano Lett. 7, 1947–1952 (2007)

    Article  CAS  Google Scholar 

  125. D. Mott, J. Galkowski, L. Wang, J. Luo, C.-J. Zhong, Langmuir 23, 5740–5745 (2007). https://doi.org/10.1021/la0635092

    Article  CAS  PubMed  Google Scholar 

  126. L. Gou, C.J. Murphy, Nano Lett. 3, 231–234 (2003)

    Article  CAS  Google Scholar 

  127. T. Ghodselahi, M.A. Vesaghi, Phys. B 406, 2678–2683 (2011)

    Article  CAS  Google Scholar 

  128. O. Peña-Rodríguez, U. Pal, J. Opt. Soc. Am. B. 28, 11 (2011)

    Article  CAS  Google Scholar 

  129. H. Amekura, B. Johannessen, D.J. Sprouster, M.C. Ridgway, Appl. Phys. Lett. 99, 043102 (2011)

    Article  CAS  Google Scholar 

  130. L.Q. Pham, J.H. Sohn, C.W. Kim, J.H. Park, H.S. Kang, B.C. Lee, Y.S. Kang, J. Colloid Interface Sci. 365, 103–109 (2012)

    Article  CAS  PubMed  Google Scholar 

  131. I. Pastoriza-Santos, A. Sánchez-Iglesias, B. Rodríguez-González, L.M. Liz-Marzán, Small 5, 440–443 (2009)

    Article  CAS  PubMed  Google Scholar 

  132. A. Henglein, J. Phys. Chem. B 104, 1206 (2000)

    Article  CAS  Google Scholar 

  133. A.C. Curtis, D.G. Duff, P.P. Edwards, D.A. Jefferson, B.F.G. Johnson, A.I. Kirkland, A.S. Wallace, Angew. Chem. Int. Ed. 27, 1530 (1988)

    Article  Google Scholar 

  134. I. Lisiecki, M.P. Pileni, J. Am. Chem. Soc. 115, 3887 (1993)

    Article  CAS  Google Scholar 

  135. J. Li, C. Liu, Z. Xie, Mater. Res. Bull. 46, 743–747 (2011)

    Article  CAS  Google Scholar 

  136. A. Sharma, S. Bahniwal, S. Aggarwal, S. Chopra, D. Kanjilal, Bull. Mater. Sci. 34, 645–649 (2011)

    Article  CAS  Google Scholar 

  137. G. Fang, W. Li, X. Shen, J.M. Perez-Aguilar, Y. Chong, X. Gao, Z. Chai, C. Chen, C. Ge, R. Zhou, Nat. Commun. 9, 129 (2018). https://doi.org/10.1038/s41467-017-02502-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. W. Gao, Y. Sun, M. Cai, Y. Zhao, W. Cao, Z. Liu, G. Cui, B. Tang, Nat. Commun. 9(231), 241 (2018). https://doi.org/10.1038/s41467-017-02657-z

    Article  CAS  Google Scholar 

  139. N. Parveen, M.H. Cho, Sci. Rep. 6(27318), 27328 (2016). https://doi.org/10.1038/srep27318

    Article  CAS  Google Scholar 

  140. S. Zhong, Q. Xu, Bull. Chem. Soc. Jpn 91(1606), 1617 (2018). https://doi.org/10.1246/bcsj.20180227

    Article  CAS  Google Scholar 

  141. Z. Yang, X. Hao, S. Chen, Z. Ma, W. Wang, C. Wang, L. Yue, H. Sun, Q. Shao, V. Murugadoss, Z. Guo, J. Colloid Interface Sci. 533(13), 23 (2019). https://doi.org/10.1016/j.jcis.2018.08.053

    Article  CAS  Google Scholar 

  142. T. Yonezawa, D. Cempel, M. Thanh Nguyen, Bull. Chem. Soc. Jpn 91, 1781–1798 (2018). https://doi.org/10.1246/bcsj.20180285

    Article  CAS  Google Scholar 

  143. H. Abe, J. Liu, K. Ariga, Mater. Today 19(12), 18 (2016). https://doi.org/10.1016/12j.mattod.2015.08.021

    Article  Google Scholar 

  144. T.D. Nguyen, C.T. Dinh, T.O. Do, Chem. Commun. 51, 624–635 (2015). https://doi.org/10.1039/c4cc05741d

    Article  Google Scholar 

  145. S. Zhang, Y. Hao, D. Su, V. Doan-Nguyen, Y. Wu, J. Li, S. Sun, C.B. Murray, J. Am. Chem. Soc. 136, 15921–15924 (2014). https://doi.org/10.1021/ja509906

    Article  CAS  PubMed  Google Scholar 

  146. F.M. Auxilia, S. Ishihara, S. Mandal, T. Tanabe, G. Saravanan, G.V. Ramesh, N. Umezawa, T. Hara, Y. Xu, S. Hisita, Y. Yamauchi, A. Dakshanamoorthy, J.P. Hill, K. Ariga, H. Abe, Adv. Mater. 26(4481), 4485 (2014). https://doi.org/10.1002/adma.201306055

    Article  CAS  Google Scholar 

  147. R. Rajendran, L.K. Shresta, R.M. Kumar, R. Jayavel, J.P. Hill, K. Ariga, J. Inorg. Org. Pol. Mater. 25, 267–274 (2014). https://doi.org/10.1007/s10904-014-0102-4

    Article  CAS  Google Scholar 

  148. K. Ariga, M. Nishikawa, T. Mori, J. Takeya, L.K. Shrestha, J.P. Hill, Sci. Technol. Adv. Mater. 20(51), 95 (2019). https://doi.org/10.1080/14686996.2018.1553108

    Article  CAS  Google Scholar 

  149. K. Ariga, V. Malgras, Q. Ji, M.B. Zakria, Y. Yamauchi, Coord. Chem. Rew. 320–321(139), 152 (2016). https://doi.org/10.1016/j.ccr.2016.01.015

    Article  CAS  Google Scholar 

  150. N. Yoshinari, T. Koono, Bull. Chem. Soc. Jpn 91(790), 812 (2018). https://doi.org/10.1246/bcsj.20180032

    Article  CAS  Google Scholar 

  151. M. Iqbal, Y.V. Kaneti, J. Kim, B. Yuliarto, Y.-M. Kang, Y. Bando, Y. Sugahara, Y. Yamauchi, Small 15, 1804378 (2019). https://doi.org/10.1002/smll.201804378

    Article  CAS  Google Scholar 

  152. Z. Li, S. Qi, Y. Liang, Z. Zhang, X. Li, H. Dong, Micromachines (2019). https://doi.org/10.3390/mi10010002

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge funding of the Unidade de Ciências Biomoleculares Aplicadas-UCIBIO by FCT/MEC (UID/Multi/04378/2013), and co-funding by ERDF under a PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728) and the Associate Laboratory for Green Chemistry-LAQV, which is supported by FCT/MCTES (UID/QUI/50006/2019). This work was also funded by the Applied Molecular Biosciences Unit-UCIBIO, which is supported by FCT/MCTES (UID/Multi/04378/2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Cid or J. Simal-Gandara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cid, A., Simal-Gandara, J. Synthesis, Characterization, and Potential Applications of Transition Metal Nanoparticles. J Inorg Organomet Polym 30, 1011–1032 (2020). https://doi.org/10.1007/s10904-019-01331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01331-9

Keywords

Navigation