Skip to main content

Advertisement

Log in

Vegetation and disturbance history of the Bavarian Forest National Park, Germany

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

National parks are supposed to protect large-scale ecological processes, along with species and ecosystems. Detailed knowledge about past vegetation and disturbance regimes therefore forms an important basis for appropriate management. In the Bavarian Forest National Park in SE Germany, we therefore studied fossil pollen, spores and macrofossils from lake Rachelsee, a nearby mire, and Stangenfilz mire, all lying at higher elevations. Results indicate that deciduous forest on lower slopes (ca. 500–1,000 m a.s.l.) were first affected by humans in Neolithic times ca. 4500 bc with marked declines of Tilia, Ulmus and Fraxinus. High-montane mixed forests (1,000–1,450 m a.s.l.) were in a near-natural state consisting of Picea, Abies and Fagus in comparable proportions up to ca. 500 bc (a natural baseline condition), after which they were impacted by forest grazing and/or logging, starting between early-Roman times to early-Medieval times depending on location. Abies especially declined markedly. Forest partially recovered during the migration period fifth-eighth century ad, especially Carpinus, but not Abies. Subsequently, deforestation increased at lower elevation for food production, and forest grazing and wood extraction at higher elevation led to a further strong decline of Abies around ad 1000 near Rachelsee. After that, nutrient levels increased continually at all elevations, and a forest fire occurred in the 13th century near Stangenfilz. During the 19th century, forests around Rachelsee recovered partially whereas overgrazing of Stangenfilz resulted in a hiatus. Forests declined further in the 20th century around the study sites, but after ca. ad 1960 less so around Rachelsee thanks to local conservation measures. Historically recorded large-scale bark-beetle infestations following heavy storms, such as in the ad 1870s and 1980s, hardly left traces in the pollen data. From a palaeoecological perspective the Park’s no-intervention management strategy is well-suited to facilitate recovery of original forest functioning and diversity, as it is slowly leading to renewal of natural mixed forest of Abies, Picea and Fagus. This development may have considerable influence on the future disturbance regime, and the insights obtained will be important for the park management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ammann B, Birks HJB, Brooks SJ et al (2000) Quantification of biotic responses to rapid climatic changes around the Younger Dryas—a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 159:313–347

    Google Scholar 

  • Ammann B, van Leeuwen JFN, van der Knaap WO, Lischke H, Heiri O, Tinner W (2013) Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr Palaeoclimatol Palaeoecol 391:40–59

    Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Google Scholar 

  • Bentz BJ, Régnière J, Fettig CJ et al (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60:602–613

    Google Scholar 

  • Birks HJB, Tinner W (2016) European tree dynamics and invasions during the Quaternary. In: Krumm F, Vítková L (eds) Introduced tree species in European forests: challenges and opportunities. European Forest Institute, Freiburg, pp 20–43

    Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  • Břízová E (2011) Quillwort (Isoëtes), a mysterious plant from the Czech Republic. Acta Musei Nationalis Pragae Series B 67:25–34

    Google Scholar 

  • Broström A, Nielsen AB, Gaillard M-J et al (2008) Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. Veget Hist Archaeobot 17:461–478

    Google Scholar 

  • Carter VA, Chiverrell RC, Clear JL et al (2018) Quantitative palynology informing conservation ecology in the bohemian/bavarian forests of Central Europe. Front Plant Sci 8:2268. https://doi.org/10.3389/fpls.2017.02268

    Article  Google Scholar 

  • Christensen PB, Blackmore S (1988) The Northwest European Pollen Flora, 40: Tiliaceae. Rev Palaeobot Palynol 57:33–43

    Google Scholar 

  • Colombaroli D, Beckmann M, van der Knaap WO, Curdy P, Tinner W (2013) Changes in biodiversity and vegetation composition in the central Swiss Alps during the transition from pristine forest to first farming. Divers Distrib 19:157–170

    Google Scholar 

  • Giesecke T, Bennett KD, Birks HJB et al (2011) The pace of Holocene vegetation change—testing for synchronous developments. Quat Sci Rev 30:2,805–2,814

    Google Scholar 

  • Giesecke T, Brewer S, Finsinger W, Leydet M, Bradshaw RHW (2017) Patterns and dynamics of European vegetation change over the last 15,000 years. J Biogeogr 44:1,441–1,456

    Google Scholar 

  • Goslar T, van der Knaap WO, Kamenik C, van Leeuwen JFN (2009) Free-shape 14C age-depth modelling of an intensively dated modern peat profile. J Quat Sci 24:481–499. https://doi.org/10.1002/jqs.1283

    Article  Google Scholar 

  • Hauner U (1980) Untersuchungen zur klimagesteuerten tertiären und quartären Morphogenese des Inneren Bayerischen Waldes (Rachel–Lusen) unter besonderer Berücksichtigung pleistozän kaltzeitlicher Formen und Ablagerungen. Regensburger Geografische Schriften 14. Institut für Geographie an der Universität Regensburg, Regensburg

  • Heiri O, Millet L (2005) Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). J Quat Sci 20:33–44

    Google Scholar 

  • Heiri O, Brooks SJ, Renssen H et al (2014) Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat Commun 5:4914. https://doi.org/10.1038/ncomms5914

    Article  Google Scholar 

  • Heiri O, Ilyashuk B, Millet L, Samartin S, Lotter AF (2015) Stacking of discontinuous regional palaeoclimate records: chironomid-based summer temperatures from the Alpine region. Holocene 25:137–149

    Google Scholar 

  • Henne PD, Elkin CM, Reineking B, Bugmann H, Tinner W (2011) Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. J Biogeogr 38:933–949

    Google Scholar 

  • Heurich M, Englmaier KH (2010) The development of tree species composition in the Rachel-Lusen region of the Bavarian Forest National Park. Silva Gabreta 16:165–186

    Google Scholar 

  • Heurich M, Beudert B, Rall H, Křenová Z (2010) National parks as model regions for interdisciplinary long-term ecological research: the Bavarian Forest and Šumavá National Parks underway to transboundary ecosystem research. In: Müller F, Baessler C, Schubert H, Klotz S (eds) Long-term ecological research: between theory and applications. Springer, Amsterdam, pp 327–344

    Google Scholar 

  • Kalis AJ (1984) Forêt de la Bresse (Vogezen), vegetatiekundige en pollenanalytische onderzoekingen naar de bosgeschiedenis van een centraal-Europees middelgebergte (Forêt de la Bresse (Vosges), phytosociological and palynological investigations on the forest-history of a central-European mountain range). PhD Thesis, University of Utrecht, Utrecht (with a summary in English)

  • Kozáková R, Pokorný P, Peša V, Dalielisová A, Čuláková K, Svitavská Svobodová H (2015) Prehistoric human impact in the mountains of Bohemia. Do pollen and archaeological data support the traditional scenario of a prehistoric “wilderness”? Rev Palaeobot Palynol 220:29–43

    Google Scholar 

  • Lang G (1994) Quartäre vegetationsgeschichte europas: methoden und ergebnisse. Fischer, Jena

    Google Scholar 

  • Larocque-Tobler I, Grosjean M, Heiri O, Trachsel M, Kamenik C (2010) Thousand years of climate change reconstructed from chironomid subfossils preserved in varved lake Silvaplana, Engadine, Switzerland. Quat Sci Rev 29:1,940–1,949

    Google Scholar 

  • Lotter AF (1999) Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Veget Hist Archaeobot 8:165–184

    Google Scholar 

  • Lotter AF, Birks HJB, Eicher U, Hofmann W, Schwander J, Wick L (2000) Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 159:349–361

    Google Scholar 

  • Lotter AF, Heiri O, Brooks S, van Leeuwen JFN, Eicher U, Ammann B (2012) Rapid summer temperature changes during termination 1a: high-resolution multi-proxy climate reconstructions from Gerzensee (Switzerland). Quat Sci Rev 36:103–113

    Google Scholar 

  • Lutgerink RHP, Swertz CA, Janssen CR (1989) Regional pollen assemblages versus landscape regions in the Monts du Forez, Massif Central, France. Pollen Spores 31:45–60

    Google Scholar 

  • MacArthur RH (1957) On the relative abundance of bird species. Proc Natl Acad Sci USA 43:293–295

    Google Scholar 

  • Marsicek J, Shuman BN, Bartlein PJ, Shafer SL, Brewer S (2018) Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554:92–96

    Google Scholar 

  • Mazier F, Broström A, Gaillard M-J, Vittoz P, Buttler A (2008) Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland). Veget Hist Archaeobot 17:479–495

    Google Scholar 

  • Molinari C, Lehsten V, Bradshaw RHW et al (2013) Exploring potential drivers of European biomass burning over the Holocene: a data-model analysis. Glob Ecol Biogeogr 22:1,248–1,260

    Google Scholar 

  • Morris JL, Brunelle A (2012) Pollen accumulation in lake sediments during historic spruce beetle disturbances in subalpine forests of southern Utah, USA. Holocene 22:961–974

    Google Scholar 

  • Prentice IC (1985) Pollen representation, source area, and basin size: towards a unified theory of pollen analysis. Quat Res 23:76–86

    Google Scholar 

  • Procháska F (2000) Šumavské šídlatky—Mýty a skutečnost: Quillwort species in the Czech Bohemian Forest (Šumava Mts)—fables and reality. Silva Gabreta 5:83–92

    Google Scholar 

  • Reimer P, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1,869–1,887

    Google Scholar 

  • Rey F, Schwörer C, Gobet E, Colombaroli D, van Leeuwen JFN, Schleiss S, Tinner W (2013) Climatic and human impacts on mountain vegetation at Lauenensee (Bernese Alps, Switzerland) during the last 14,000 years. Holocene 23:1,415–1,427

    Google Scholar 

  • Rey F, Gobet E, Szidat S, Lotter AF, Gilli A, Hafner A, Tinner W (2019) Radiocarbon wiggle matching on laminated sediments delivers high-precision chronologies. Radiocarbon 61:265–285

    Google Scholar 

  • Schwörer C, Kaltenrieder P, Glur L et al (2014) Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps. Veget Hist Archaeobot 23:479–496

    Google Scholar 

  • Sjögren P, van Leeuwen JFN, van der Knaap WO, van der Borg K (2006) The effect of climate variability on pollen productivity, AD 1975-2000, recorded in a Sphagnum peat hummock. Holocene 16:277–286

    Google Scholar 

  • Sjögren P, van der Knaap WO, van Leeuwen JFN, Andrič M, Grünig A (2007) The occurrence of an upper decomposed peat layer, or “kultureller Trockenhorizont”, in the Alps and Jura Mountains. Mires and Peat 2: Article 5. http://www.mires-and-peat.net/

  • Sjögren P, van der Knaap WO, Kaplan J, van Leeuwen JFN, Ammann B (2008) A pilot study on pollen representation of mountain valley vegetation in the central Alps. Rev Palaeobot Palynol 149:208–218

    Google Scholar 

  • Sjögren P, van der Knaap WO, van Leeuwen JFN (2015) Pollen dispersal properties for Poaceae and Cyperaceae: first estimates of their absolute pollen productivities. Rev Palaeobot Palynol 216:123–131

    Google Scholar 

  • Soepboer W, Sugita S, Lotter A, van Leeuwen JFN, van der Knaap WO (2007) Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene 17:65–77

    Google Scholar 

  • Soepboer W, Sugita S, Lotter AF (2010) Regional vegetation-cover changes on the Swiss Plateau during the past two millennia: a pollen-based reconstruction using the REVEALS model. Quat Sci Rev 29:472–483

    Google Scholar 

  • Stähli M, Finsinger W, Tinner W, Allgower B (2006) Wildfire history and fire ecology of the Swiss National Park (Central Alps): new evidence from charcoal, pollen and plant macrofossils. Holocene 16:805–817

    Google Scholar 

  • Stalling H (1987) Untersuchungen zur spät- und postglazialen Vegetationsgeschichte im Bayerischen Wald. Dissertationes Botanicae 105. Borntraeger, Stuttgart

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Szidat S, Salazar GA, Vogel E, Battaglia M, Wacker L, Synal H-A, Türler A (2014) 14C analysis and sample preparation at the new Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA). Radiocarbon 56:561–566. https://doi.org/10.2458/56.17457

    Article  Google Scholar 

  • Tamboer-van den Heuvel G, Janssen CR (1976) Recent pollen assemblages from the crest region of the Vosges Mountains (France). Rev Palaeobot Palynol 21:219–240

    Google Scholar 

  • Tinner W, Ammann B (2005) Long-term responses of mountain ecosystems to environmental changes: resilience, adjustment, and vulnerability. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global Change and Mountain Regions. Springer, Heidelberg, pp 133–143

    Google Scholar 

  • Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29:551–554

    Google Scholar 

  • Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25:526–549

    Google Scholar 

  • Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289

    Google Scholar 

  • Tinner W, Conedera M, Gobet E, Hubschmid P, Wehrli M, Ammann B (2000) A palaeoecological attempt to classify fire sensitivity of trees in the southern Alps. Holocene 10:565–574

    Google Scholar 

  • Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the Alps since the last ice age. Holocene 15:1,214–1,226

    Google Scholar 

  • Trautmann W (1953) Zur Unterscheidung fossiler Spaltöffnungen der mitteleuropäischen Coniferen. Flora 140:523–533

    Google Scholar 

  • Valsecchi V, Carraro G, Conedera M, Tinner W (2010) Late-Holocene vegetation and land-use dynamics in the Southern Alps (Switzerland) as a basis for nature protection and forest management. Holocene 20:483–495

    Google Scholar 

  • Von Grafenstein U, Erlenkeuser H, Müller J, Jouzel J, Johnsen S (1998) The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim Dyn 14:73–81

    Google Scholar 

  • Weilner C (2016) Isoëtes im Bayerischen Wald und im Böhmerwald. Hoppea, Denkschriften der Regensburger Bototanischen Gesellschaft 77:99–112

    Google Scholar 

  • Welten M (1982) Vegetationsgeschichtliche Untersuchungen in den westlichen Schweizer Alpen: Bern–Wallis. Denkschriften der Schweizerischen Naturforschenden Gesellschaft 95. Birkhäuser, Basel

  • Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation Science 314:1,261–1,265

    Google Scholar 

  • Seidl R, Schelhaas MJ, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Chang Biol 17(2):842–2,852

    Google Scholar 

  • Zeppenfeld T, Miroslav S, DeRose J et al (2015) Response of mountain Picea abies forests to stand-replacing bark beetle outbreaks: neighbourhood effects lead to self-replacement. J Appl Ecol 52:1,402–1,411

    Google Scholar 

Download references

Acknowledgements

We are grateful to Willi Tanner, Daniele Colombaroli, Carole Adolf, and Martina Bisculm for help during the coring and to Florencia Oberli for pollen sample preparation. Hans Jehl from the Bavarian Forest National Park administration helped in the organisation and logistics of the field work. The study was funded equally by the Bavarian Forest National Park, Germany, and the University of Bern, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem O. van der Knaap.

Additional information

Communicated by K.-E. Behre.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tanja Studer—Deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Knaap, W.O., van Leeuwen, J.F.N., Fahse, L. et al. Vegetation and disturbance history of the Bavarian Forest National Park, Germany. Veget Hist Archaeobot 29, 277–295 (2020). https://doi.org/10.1007/s00334-019-00742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-019-00742-5

Keywords

Navigation