Skip to main content
Log in

Sources of Sediment Clasts and Depositional Environment of the Upper Paleozoic Shazagaitui and Zhipkhoshi Formations of the Chiron Basin, Eastern Transbaikalia

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The article presents the results of comprehensive geological and geochemical study of the sedimentary rocks of the Upper Paleozoic Shazagaitui and Zhipkhoshi formations filling the upper part of the Chiron Basin, as well as U–Pb geochronological and Lu–Hf isotopic studies of zircons from these formations. The geochemical features of the terrigenous rocks of the Shazagaitui and Zhipkhoshi formations indicate that they were formed in a subduction zone environment. The presence of conglomerates and gravelstones and the predominance of unrounded and subrounded fragments in the rocks of the Shazagaitui and Zhipkhoshi formations also indicate their sedimentation in tectonically active zones. The abundant detrital zircons of Paleoproterozoic age, as well as the Paleoproterozoic and Archean Hf model ages of most of the zircons in the sandstones of the Shazagaitui and Zhipkhoshi formations, suggest that the main source of sediment clasts for these formations are the magmatic and metamorphic rocks of the southern surrounding of the North Asian Craton. However, the presence of Devonian–Carboniferous zircons with relatively young (mostly Neoproterozoic) Hf model ages is evidence that these zircons in the sedimentation basin were derived through erosion of mature (?) island arcs, but the contribution of this source is minor. The obtained results in combination with our regional geological data from previous studies suggest that the sediments of the Shazagaitui and Zhipkhoshi formations were accumulated in a basin setting on the southern framing of the North Asian Craton facing the Paleozoic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. A. Amantov, “Tectonics and Formations of Transbaikalia and Northern Mongolia,” in Trudy VSEGEI, 231 ( Nedra, Leningrad, 1975) [in Russian].

    Google Scholar 

  2. K. K. Anashkina, K. S. Butin, F. I. Enikeev, A. V. Kinyakin, V. P. Krasnov, V. A. Krivenko, B. I. Oleksiv, T. A. Pinaeva, I. G. Rutshtein, V. N. Semenov, L. P. Starukhina, N. N. Chaban, and E. V. Shulika, Geological Structure of the Chita Region: Explanatory Notes to the Geological Map. 1 : 500 000 (Chita, 1997) [in Russian].

  3. Atlas of Fauna and Flora of the Paleozoic–Mesozoic of the Transbaikalia, Ed. by A. V. Kurilenko, G. V. Kotlyar, N. P. Kul’kov, et al. (Nauka, Novosibirsk, 2002) [in Russian].

  4. V. G. Belichenko, N. K. Geletii, and I. G. Barash, “Barguzin microcontinent (Baikal mountain area): the problem of outlining,” Russ. Geol. Geophys. 47 (10), 1035–1045 (2006).

  5. I. V. Buchko, E. B. Sal’nikova, A. A. Sorokin, A. P. Sorokin, A. B. Kotov, and S. Z. Yakovleva, “First Evidence for the manifestation of Mesozoic mafic–ultramafic magmatism within the Selenga–Stanovoi Superterrane, southeastern framing of the Siberian Craton,” Dokl. Earth Sci. 405 (9), 1337–1341 (2005).

  6. A. S. Byakov, “A new Permian bivalve zonal scale of Northeastern Asia. Article 2: Correlation problems,” Russ. J. Pac. Geol. 7 (1), 1–15 (2013).

  7. N. I. Volkova and E. V. Sklyarov, “High-pressure complexes of Central Asian Fold Belt: geologic ssetting, geochemistry, and geodynamic implications,” Russ. Geol. Geophys. 48 (1), 109–119 (2007).

  8. S. N. Gavrikova, L. L. Nikolaeva, and A. V. Galanin, Early Precambrian of the Southern Part of the Stanovoi Fold Area (Nedra, Moscow, 1991) [in Russian].

    Google Scholar 

  9. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A.I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  10. Geology of Northeastern Asia. Volume 4. Geological Evolution and General Tendencies in Metallogeny, Carbon Formation, and Oil and Gas Formation, (Nedra, Leningrad, 1973) [in Russian].

  11. D. P. Gladkochub, A. M. Stanevich, A. M. Mazukabzov, T. V. Donskaya, S. A. Pisarevskii, G. Nikol’, Z. L. Motova, and T. A. Kornilova, “Early evolution of the Paleoasian ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton,” Russ. Geol. Geophys. 54 (10), 1150–1163 (2013).

  12. I. V. Gordienko, “Geodynamic evolution of Late Baikalides and Paleozoids in the folded periphery of the Siberian Craton,” Russ. Geol. Geophys. 47 (1), 51–67 (2006).

  13. I. V. Gordienko, A. N. Bulgatov, N. I. Lastochkin, and V. S. Sitnikova, “Composition and U-Pb isotopic age determinations (SHRIMP-II) of the ophiolitic assemblage from the Shaman Paleospreading zone and the conditions of its formation (North Transbaiklia),” Dokl. Earth Sci. 429 (2), 1420–1425 (2009).

  14. I. V. Gordienko, A. N. Bulgatov, S. V. Ruzhentsev, O. R. Minina, V. S. Klimuk, L. I. Vetluzhskikh, G. E. Nekrasov, N. I. Lastochkin, V. S. Sitnikova, D. V. Metelkin, T. A. Goneger, and E. N. Lepekhina, “The Late Riphean–Paleozoic history of the Uda–Vitim island-arc system in the Transbaikalian sector of the Paleoasian ocean,” Russ. Geol. Geophys. 51 (5), 461–481 (2010).

  15. I. V. Gordienko and D. V. Metelkin, “The evolution of the subduction zone magmatism on the Neoproterozoic and Early Paleozoic active margins of the Paleoasian ocean,” Russ. Geol. Geophys. 57 (1), 69–81 (2016).

  16. T. V. Donskaya, E. B. Sal’nikova, E. V. Sklyarov, D. P. Gladkochub, A. M. Mazukabzov, V. P. Kovach, S. Z. Yakovleva, N. G. Berezhnaya, “Early Proterozoic postcollision magmatism at the southern flank of the Siberian Craton: new geochronological data and geodynamic implications,” Dokl. Earth Sci. 383 (2), 125–128 (2002).

  17. T. V. Donskaya, D. P. Gladkochub, and V. P. Kovach, “Petrogenesis of Early Proterozoic postcollisional granitoids in the southern Siberian Craton,” Petrology 13 (3), 229–252 (2005).

  18. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Tectonics of Lithospheric Plates of the USSR Territory (Nedra, Moscow, 1990), Vol. 1 [in Russian].

    Google Scholar 

  19. M. P. Ketris, “Petrochemical characteristics of terrigenous rocks,” Ezhegodnik-1974 (VINITI, Moscow, 1976), pp. 32–38 [in Russian].

    Google Scholar 

  20. V. P. Kovach, E. B. Sal’nikova, E. Yu. Rytsk, V. V. Yarmolyuk, A. B. Kotov, I. V. Anisimova, S. Z. Yakovleva, A. M. Fedoseenko, Yu. V. Plotkina, “The time length of formation of the Angara–Vitim batholite: results of U–Pb geochronological studies,” Dokl. Earth Sci. 444 (1), 553–558 (2012).

  21. V. N. Kozerenko, Geological Structure of the Southeastern Eastern Transbaikalia (Izd-vo L’vov. Univ., Lvov, 1956) [in Russian].

    Google Scholar 

  22. G. V. Kotlyar and L. I. Popeko, “Upper Paleozoic biostratigraphy, bryozoa, and brachiopods of Transbaikalia,” Zap. Zabaikal’sk. Fil. Geograf. O-va SSSR, (Chita, 1967), Vo. 28 [in Russian].

  23. A. M. Larin, E. B. Sal’nikova, A. B. Kotov, L. B. Makar’ev, S. Z. Yakovleva, and V. P. Kovach, “Early Proterozoic syn- and postcollision granites in the northern part of the Baikal Fold Area,” Stratigraphy. Geol. Correlation 14 (5), 463–474 (2006).

  24. A. M. Larin, A. B. Kotov, V. P. Kovach, E. B. Sal’nikova, V. V. Yarmolyuk, S. D. Velikoslavinskii, S. Z. Yakovleva, and Yu. V. Plotkina, “Rare metal granites of the Katugin Complex (Aldan Shield): sources and geodynamic formation settings,” Dokl. Earth Sci. 464 (1), 889–893 (2015).

  25. A. M. Mazukabzov, T. V. Donskaya, D. P. Gladkochub, and I. P. Paderin, “The Late paleozoic geodynamics of the West Transbaikalian segment of the Central Asian Fold Belt,” Russ. Geol. Geophys. 51 (5), 482–491 (2010).

  26. M. S. Nagibina, Stratigraphy and Formations of the Mongol–Okhotsk Belt (VINITI, Moscow, 1969) [in Russian].

    Google Scholar 

  27. G. E. Nekrasov, S. V. Ruzhentsev, S. L. Presnyakov, N. V. Rodionov, D. A. Lykhin, B. G. Golionko, “U-Pb SHRIMP dating of zircons from plutonic and metamorphic rocks of the Ikat–Bagdarin and Agin zones, Transbaikalia,” in Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent): Proceedings of Scientific Conference, (IZK SO RAN, Irkutsk, 2006), Vol. 2, pp. 58–60 [in Russian].

  28. G. E. Nekrasov, N. V. Rodionov, N. G. Berezhnaya, S. A. Sergeev, S. V. Ruzhentsev, O. R. Minina, and B. G. Golionko, “U-Pb age of zircons from plagiogranite veins in migmatized amphibolites of the Shaman Range (Ikat–Bagdarin Zone, Vitim Highland, Transbaikal Region),” Dokl. Earth Sci. 413 (1), 160–163 (2007).

  29. L. M. Parfenov, L. I. Popeko, and O. Tomurtogoo, “Problems of tectonics of the Mongol–Okhotsk Orogenic Belt,” Tikhookean. Geol. 18 (5), 24–43 (1999).

  30. L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Bodarch, V. G. Belichenko, A. N. Bulgatov, S. I. Dril’, G. L. Kirillova, M. I. Kuz’min, W. J. Nokleberg, A. V. Prokop’ev, V. F. Timofeev, O. Tomurtogoo, and H. Yan’, “Model of Formation of orogenic belts of Central and Northeastern Asian,” Tikhookean. Geol. 22 (6), 7–41 (2003).

  31. Pettijohn, F.J., Potter, R., and Siever, R., Sand and Sandstone (Springer, Heidelberg, 1972).

    Google Scholar 

  32. S. V. Ruzhentsev and G. E. Nekrasov, “Tectonics of the Aga zone, Mongolia–Okhotsk Belt,” Geotectonics, 43 (1), 34–50 (2009).

  33. S. V. Ruzhentsev, O. R. Minina, G. E. Nekrasov, V. A. Aristov, B. G. Golionko, N. A. Doronina, and D. A. Lykhin, “The Baikal–Vitim Fold System: structure and geodynamic evolution,” Geotectonics 46 (2), 87–110 (2012).

  34. E. Yu. Rytsk, V. P. Kovach, V. V. Yarmolyuk, V. I. Kovalenko, E. S. Bogomolov, and A. B. Kotov, “Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian Foldbelt,” Geotectonics 45 (5), 349–377 (2011).

  35. E. S. Sobolev, I. V. Budnikov, and A. G. Klets, “Late Bashkirian ammonoids and nautiloids from the Western Verkhoyansk Region,” Paleontol. J., 32 (5), 447–461 (1998).

    Google Scholar 

  36. A. A. Sorokin, A. V. Ponomarchuk, A. V. Travin, V. A. Ponomarchuk, K. D. Vakhtomin, “New 40Ar/39Ar age of granitic rocks and related gold mineralization at the Kirovskoye Deposit (southeastern margin of the North Asian Craton),” Dokl. Earth Sci. 458 (2), 1230−1235 (2014).

  37. A. A. Sorokin, A. P. Sorokin, V. A. Ponomarchuk, and A. V. Travin, “Early Jurassic volcanics of the Uda Belt (southeastern part of the North Asian Craton): 40Ar/39Ar geochronological and geochemical data,” Dokl. Earth Sci. 460 (1), 6–10 (2015).

  38. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Science, Oxford, 1985).

    Google Scholar 

  39. M. I. Tulokhonov, Geological Map of the USSR. 1 : 200 000. East Transbaikalian Series. Vostochno-Zabaikal’skaya Series. Sheet M-50-II (Gosgeoltekhizdat, Moscow, 1962) [in Russian].

  40. A. A. Tsygankov, D. I. Matukov, N. G. Berezhnaya, A. N. Larionov, V. F. Posokhov, B. Ts. Tsyrenov, A. A. Khromov, and S. A. Sergeev, “Late Paleozoic granitods of the Western Transbaikalia: magma sources and stages of formation,” Russ. Geol. Geophys. 48 (1), 120—140 (2007).

  41. A. A. Tsygankov, “Late Paleozoic granitoids in Western Transbaikalia: sequence of formation, sources of magmas, and geodynamics,” Russ. Geol. Geophys. 55 (2), 153–176 (2014).

  42. E. A. Shivokhin, A. F. Ozerskii, A. V. Kurilenko, N. I. Raitina, and V. V. Karasev, State Geological Map of the Russian Federation. 1 : 1 000 000. Aldan–Transbaikalian Series. Sheet M-50. 3rd Generation, Ed. by V.V. Starchenko (VSEGEI, St. Petersburg, 2010) [in Russian].

  43. Ya. E. Yudovich, B. Ya. Dembovskii, and M. P. Ketris, “Geochemical features of the redeposition of weathering crusts in the Ordovician sediments of the Pechora Urals,” in Ezhegodnik-1976 (Inst. Geol. Komi Fil. AN SSSR, Syktyvkar, 1977), pp. 133–142 [in Russian].

    Google Scholar 

  44. Yudovich, Ya.E., Regional Geochemistry of Sedimentary Sequences, (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  45. Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  46. Y. Amelin, D.-C. Lee, A. N. Halliday, and R. T. Pidgeon, “Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons,” Nature 399, 252–255 (1999).

  47. G. Badarch, W. D. Cunningham, and B. F. Windley, “A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia,” J. Asian Earth Sci. 21 (1), 87–110 (2002).

  48. H. Bahlburg and N. Dobrzinski, A Review of the Chemical Index of Alteration (CIA) and Its Application to the Study of Neoproterozoic Glacial Deposits and Climate Transitions, Geol. Soc Mem. London, 36, 81−92 (2011).

  49. M. R. Bhatia, “Plate tectonics and geochemical composition of sandstones,” J. Geol. 91 (6), 611–627 (1983).

  50. M. R. Bhatia and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,” Contrib. Mineral. Petrol. 92, 181–193 (1986).

  51. L. P. Black, S. L. Kamo, C. M. Allen, D. W. Davis, J. N. Aleinikoff, J. W. Valley, R. Mundil, I. H. Campbell, R. J. Korsch, I. S. Williams, and C. Foudoulis, “Improved 206Pb/238U microprobe geochronology by the monitoring of trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards,” Chem. Geol. 205, 15–140 (2004).

  52. J. Blichert-Toft and F. Albarede, “The Lu-Hf geochemistry of chondrites and the evolution of the mantle–crust system,” Earth Planet. Sci. Lett. 148, 243–258 (1997).

  53. D. Bussien, N. Gombojav, W. Winkler, and A. Quadt, “The Mongol–Okhotsk Belt in Mongolia—an appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons,” Tectonophysics 510, 132–150 (2011).

  54. G. E. Gehrels, V. Valencia, and J. Ruiz, “Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb Ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry,” Geochem., Geophys., Geosyst. 9 (3), 1–13 (2008).

  55. W. L. Griffin, E. A. Belousova, S. R. Shee, and N. J. Pearson, and S. Y. O’Reilly, “Archean crustal evolution in the Northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons,” Precambrian Res. 131, 231–282 (2004).

  56. X. X. Gu, “Geochemical characteristics of the triassic tethysturbidites in northwestern sichuan, china: implications for provenance and interpretation of the tectonic setting,” Geochim. Cosmochim. Acta 58, 4615–4631 (1994).

  57. L. Harnois, “The CIW index: a new chemical index of weathering,” Sediment. Geol. 55 (3–4), 319–322 (1988).

  58. M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data,” J. Sediment. Petrol. 58, 820–829 (1988).

  59. U. S. Jayawardena and E. Izawa, “A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka,” Engineer. Geol. 36, 303–310 (1994).

  60. T. K. Kelty, A. Yin, B. Dash, et al., “Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey Basin, North-Central Mongolia: implications for the tectonic evolution of the Mongol-Okhotsk Ocean in Central Asia,” Tectonophysics 451, 290–311 (2008).

  61. A. I. Khanchuk, A. N. Didenko, L. I. Popeko, A. A. Sorokin, and B. F. Shevchenko, Structure and evolution of the Mongol–Okhotsk Orogenic Belt, The Central Asian Orogenic Belt. Geology, Evolution, Tectonics, and Models, Ed. by A. Kroner (Borntraeger Sci., Stuttgart, 2015).

    Google Scholar 

  62. S. B. Kroonenberg, “Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments,” Ed. by T. Nishiyama, G. W. Fisher, F. Kumon, K. M. Yu, Y. Watanbe, and A. Motamed, Proc. 29th Intern. Geol. Congress. Part A (VSP, Utrecht, 1994).

  63. K. R. Ludwig, Isoplot 3.6, Berkley Geochronol. Center. Spec. Publ., No. 4 (2008).

  64. J. M. Mattinson, “Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed system natural zircon samples,” Chem. Geol. 275, 186–198 (2010).

  65. W. F. McDonough and S.-S. Sun, “The composition of the Earth,” Chem. Geol. 120 (3–4), 223–253 (1995).

  66. S. M. McLennan, S. Hemming, D. K. McDanniel, and G. N. Hanson, “Geochemical approaches to sedimentation, provenance, and tectonics,” Controlling the Composition of Clastic Sediments, Ed. by M. J. Johnsson and A. Basu, Geol. Soc. Am. Spec. Pap. 285, 21–40 (1993).

  67. B. N. Nath, H. Kunzendorf, and W. L. Pluger, “Influence of provenance, weathering and sedimentary processes on the elemental ratios of the fine-grained fraction of the Bedload sediments from the Vembanad Lake and the adjoining continental shelf, Southwest Coast of India,” J. Sed. Res. 70 (5), 1081–1094 (2000).

  68. H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299, 715–717 (1982).

  69. J. B. Paces and J. D. Miller, “Precise U-Pb ages of Duluth complex and related mafic intrusions, Northeastern Minnesota: geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1. Ga Midcontinent rift system,” J. Geophys 98 (8), 13997–14013 (1993).

  70. A. Parker, “An index of weathering for silicate rocks,” Geol. Mag. 107, 501–504 (1970).

  71. B. P. Roser and R. J. Korsch, “Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio,” J. Geol. 94 (5), 635–650 (1986).

  72. B. D. Roser and R. J. Korsch, “Provenance signatures of sandstone mudstone suites determinate using discriminant function analysis of major-element data,” Chem. Geol. 67, 119–139 (1988).

  73. U. Söderlund, P. J. Patchett, J. D. Vervoort, and C. E. Isachsen, “The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions,” Earth Planet. Sci. Lett. 219, 311–324 (2004).

  74. J. S. Stacey and I. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two-stage model,” Earth Planet Sci. Lett. 26 (2), 207–221 (1975).

  75. J. D. Vervoort and P. J. Patchett, “Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites,” Geochim. Cosmochim. Acta 60, 3717–3723 (1996).

  76. J. N. J. Visser and G. M. Young, “Major element geochemistry and paleoclimatology of the Permo–Carboniferous glaciogene Dwyka Formation and post-glacial mudrocks in Southern Africa,” Palaeogeogr. Palaeoclim. Palaeoecol. 81, 49–57 (1990).

Download references

ACKNOWLEDGMENTS

We are grateful to A.I. Khanchuk and O.R. Minina for useful discussion and constructive comments, which significantly improved the manuscript. We also thank analysts E.N. Voropaev, O.G. Medvedev, A.I. Palazhchenko, V.I. Rozhdestvin, E.S. Sapozhnik, and E.V. Ushakov (Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences), V.E. Zazulin, E.M. Golubev, and A.V. Shtarev (Kosygin Institute of Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences), as well as analysts from the Arizona LaserChron Center, USA, for performance of analytical stu-dies.

Funding

The studies were supported by the Russian Science Foundation (project no. 18-35-20004) and were carried out partially in the framework of the State Task of the Kosygin Institute of Tectonics and Geophysics of the Far Eastern Branch of the Russian Academy of Sciences (no. 075-00409-19-00, study of Permian Bryozoan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. I. Popeko or V. A. Zaika.

Additional information

Recommended for publishing by A.I. Khanchuk

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popeko, L.I., Smirnova, Y.N., Zaika, V.A. et al. Sources of Sediment Clasts and Depositional Environment of the Upper Paleozoic Shazagaitui and Zhipkhoshi Formations of the Chiron Basin, Eastern Transbaikalia. Russ. J. of Pac. Geol. 13, 320–340 (2019). https://doi.org/10.1134/S1819714019040079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714019040079

Keywords:

Navigation