Skip to main content
Log in

Protein-Based Nanobiosensor for Electrochemical Determination of Hydrogen Peroxide

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

We designed a hydrogen peroxide biosensor. The electrochemical detection of H2O2 was performed based on immobilization of cobalt nanoparticles–ferritin (CoNPs–Fer) onto multiwalled carbon nanotubes (MWCNTS) ensnared into chitosan (CS) matrices. Electrochemical techniques such as differential pulse voltammetry (DPV) and cyclic voltammetry (CV) was used to check the property of biosensor. Energy-dispersive X-ray spectroscopy (EDXS) and field emission scanning electron microscopy (FESEM) techniques showed the prosperous immobilization of CoNPs–Fer on the modified GC electrode surface. The hydrogen peroxide-designed biosensor displayed a linear range from 0.2 to 14 nM (R2 = 0.99), a detection limit of 1.29 nM (S/N = 3) and sensitivity of –0.1105 μA/nM.The apparent heterogeneous electron transfer rate constant (Ks) and the charge transfer coefficient (α) were gained 4.19 s–1 and 0.49, respectively. This biosensor can detect hydrogen peroxide with high sensitivity, selectivity, and low detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kelley, E.E., Khoo, N.K., Hundley, N.J., Malik, U.Z., Freeman, B.A., and Tarpey, M.M., Hydrogen peroxide is the major oxidant product of xanthine oxidase, Free Radic. Biol. Med., 2010, vol. 48, no. 4, p. 493.

    Article  CAS  Google Scholar 

  2. Lacy, F., Gough, D.A., and Schmid-Schönbein, G.W., Role of xanthine oxidase in hydrogen peroxide production, Free Radic. Biol. Med., 1998, vol. 25, no. 6, p. 720.

    Article  CAS  Google Scholar 

  3. BienertJan, G.P., Schjoerring, J.K., and Jahn, T.P., Membrane transport of hydrogen peroxide, Biochim. Biophys. Acta, 2006, vol. 1758, p. 994.

    Article  CAS  Google Scholar 

  4. Rafipour, R., Kashanian, S., and Tarighat, F.A., Sensitive electrochemical biosensing of H2O2 based on cobalt nanoparticles synthesised in iron storage protein molecules, IET Nanobiotechnol., 2014, vol. 8, no. 4, p. 196.

    Article  Google Scholar 

  5. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalayci, O., Oxidative stress and antioxidant defense, World Allergy Organ J., 2012, vol. 5, p. 9.

    Article  CAS  Google Scholar 

  6. Nasir, M., Rauf, S., Muhammad, N., Nawaz, M.H., Chaudhry, A.A., Malik, M.H., Shahid, S.A., and Hayat, A., Biomimetic nitrogen doped titania nanoparticles as a colorimetric platform for hydrogen peroxide detection, J. Colloid Interface Sci., 2017, vol. 505, p. 1147.

    Article  CAS  Google Scholar 

  7. Farrokhnia, M., Karimi, S., Momeni, S., and Khalililaghab, S., Colorimetric sensor assay for detection of hydrogen peroxide using green synthesis of silver chloride nanoparticles: experimental and theoretical evidence, Sens. Actuat. B: Chem., 2017, vol. 246, p. 979.

    Article  CAS  Google Scholar 

  8. Sherino, B., Mohamad, S., Halim, S.N.A., and Manan, N.S.A., Electrochemical detection of hydrogen peroxide on a new microporous Ni-metal organic framework material-carbon paste electrode, Sens. Actuat. B: Chem., 2018, vol. 254, p. 1148.

    Article  CAS  Google Scholar 

  9. Wu, Y. and Hu, S., Biosensors based on direct electron transfer in redox proteins, Microchim. Acta, 2007, vol. 159, nos. 1–2, p. 1.

    Article  CAS  Google Scholar 

  10. Zhang, W. and Li, G., Third-generation biosensors based on the direct electron transfer of proteins, Anal. Sci., 2004, vol. 20, no. 4, p. 603.

    Article  CAS  Google Scholar 

  11. Kashanian, S., Rafipour, R., Tarighat, F., and Ravan, H., Immobilisation of cobaltferritin onto gold electrode based on self-assembled monolayers, IET Nanobiotechnol., 2012, vol. 6, no. 3, p. 102.

    Article  CAS  Google Scholar 

  12. Kashanian, S., Tarighat, F.A., Rafipour, R., and Abbasi-Tarighat, M., Biomimetic synthesis and characterization of cobalt nanoparticles using apoferritin, and investigation of direct electron transfer of Co (NPs)–ferritin at modified glassy carbon electrode to design a novel nanobiosensor, Mol. Biol. Rep., 2012, vol. 39, no. 9, p. 8793.

    Article  CAS  Google Scholar 

  13. Rafipour, R., Kashanian, S., Hashemi, S., Shahabadi, N., and Omidfar, K., An electrochemical biosensor based on cobalt nanoparticles synthesized in iron storage protein molecules to determine ascorbic acid, Biotechnol. Appl. Biochem., 2016, vol. 63, no. 5, p. 740.

    Article  CAS  Google Scholar 

  14. Rafipour, R., Kashanian, S., Hashemi, S., Omidfar, K., and Ezzati Nazhad Dolatabadi, J., Apoferritin-templated biosynthesis of manganese nanoparticles and investigation of direct electron transfer of MnNPs-HsAFr at modified glassy carbon electrode, Biotechnol. Appl. Biochem., 2017, vol. 64, no. 1, p. 110.

    Article  CAS  Google Scholar 

  15. Munro, H.N. and Linder, M.C., Ferritin: structure, biosynthesis, and role in iron metabolism, Physiol. Rev., 1978, vol. 58, no. 2, p. 317.

    Article  CAS  Google Scholar 

  16. Theil, E.C., Behera, R.K., and Tosha, T., Ferritins for chemistry and for life, Coord. Chem. Rev., 2013, vol. 257, no. 2, p. 579.

    Article  CAS  Google Scholar 

  17. Andrews, S.C., Harrison, P.M., Yewdall, S.J., Arosio, P., Levi, S., Bottke, W., von Darl, M., Briat, J.-F., Laulhère, J.-P., and Lobreaux, S., Structure, function, and evolution of ferritins, J. Inorg. Biochem., 1992, vol. 47, no. 1, p. 161.

    Article  CAS  Google Scholar 

  18. Uchida, M., Kang, S., Reichhardt, C., Harlen, K., and Douglas, T., The ferritin superfamily: supramolecular templates for materials synthesis, Biochim. Biophys. Acta, 2010, vol. 1800, no. 8, p. 834.

    Article  CAS  Google Scholar 

  19. Yoshimura, H., Protein-assisted nanoparticle synthesis, Colloids Surf. A, 2006, vol. 282, p. 464.

    Article  Google Scholar 

  20. Zhu, C., Yang, G., Li, H., Du, D., and Lin, Y., Electrochemical sensors and biosensors based on nanomaterials and nanostructures, Anal. Chem., 2014, vol. 87, no. 1, p. 230.

    Article  Google Scholar 

  21. Xu, Z., Chen, X., and Dong, S., Electrochemical biosensors based on advanced bioimmobilization matrices, Trends. Anal. Chem., 2006, vol. 25, no. 9, p. 899.

    Article  CAS  Google Scholar 

  22. Domard, A. and Domard, M., Chitosan: structure-properties relationship and biomedical applications, Polym. Biomater., 2001, vol. 2, p. 187.

    Google Scholar 

  23. Ali, A. and Ahmed, S., A review on chitosan and its nanocomposites in drug delivery, Int. J. Biol. Macromol., 2018, vol. 109, p. 273.

    Article  CAS  Google Scholar 

  24. Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., and Hebard, A.F., Transparent, conductive carbon nanotube films, Science, 2004, vol. 305, no. 5688, p. 1273.

    Article  CAS  Google Scholar 

  25. Goyal, R.N., Gupta, V.K., and Bachheti, N., Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone – an anabolic steroid used in doping, Anal. Chim. Acta, 2007, vol. 597, no. 1, p. 82.

    Article  CAS  Google Scholar 

  26. Wang, S.-F., Xie, F., and Hu, R.-F., Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen, Sens. Actuat. B: Chem., 2007, vol. 123, no. 1, p. 495.

    Article  CAS  Google Scholar 

  27. Park, C.W., Park, H.J., Kim, J.H., Won, K., and Yoon, H.H., Immobilization and charcteriazation of ferritin on gold electrode, Ultramicroscopy, 2009, vol. 109, no. 8, p. 1001.

    Article  CAS  Google Scholar 

  28. Salimi, A., Sharifi, E., Noorbakhsh, A., and Soltanian, S., Electrochem. Commun., 2006, vol. 8, no. 9, pp. 1499–1508.

    Article  CAS  Google Scholar 

  29. Karim-Nezhad, G., Pashazadeh, S., and Pashazadeh, A., Ni/Al LDH nanoparticles modified carbon paste electrode: application to electro-catalytic oxidation of methanol, Anal. Bioanal. Electrochem., 2012, vol. 4, p. 399.

    Google Scholar 

  30. Li, X., Niu, X., Zhao, W., Chen, W., Yin, C., Men, Y., Li, G., and Sun, W., Black phosphorene and PEDOT: PSS-modified electrode for electrochemistry of hemoglobin, Electrochem. Commun., 2018, vol. 86, p. 68.

    Article  CAS  Google Scholar 

  31. Fotouhi, L., Fatollahzadeh, M., and Heravi, M.M., Electrochemical behavior and voltammetric determination of sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube, Int. J. Electrochem. Sci., 2012, vol. 7, p. 3919.

    CAS  Google Scholar 

  32. Hong, J., Zhao, Y.-X., Xiao, B.-L., Moosavi-Movahedi, A.A., Ghourchian, H., and Sheibani, N., Direct electrochemistry of hemoglobin immobilized on a functionalized multi-walled carbon nanotubes and gold nanoparticles nanocomplex-modified glassy carbon electrode, Sensors, 2013, vol. 13, no. 7, p. 8595.

    Article  CAS  Google Scholar 

  33. Yin, Y., Lü, Y., Wu, P., and Cai, C., Direct electrochemistry of redox proteins and enzymes promoted by carbon nanotubes, Sensors, 2005, vol. 5, no. 4, p. 220.

    Article  CAS  Google Scholar 

  34. Bard, A.J., Faulkner, L.R., Leddy, J., and Zoski, C.G., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 1980.

    Google Scholar 

  35. Ngamchuea, K., Eloul, S., Tschulik, K., and Compton, R.G., Planar diffusion to macro disc electrodes-what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively?, J. Solid. State. Electrochem., 2014, vol. 18, no. 12, p. 3251.

    Article  CAS  Google Scholar 

  36. Antink, W.H., Choi, Y., Seong, K.-d., and Piao, Y., Simple synthesis of CuO/Ag nanocomposite electrode using precursor ink for non-enzymatic electrochemical hydrogen peroxide sensing, Sens. Actuat. B: Chem., 2018, vol. 255, p. 1995.

    Article  Google Scholar 

  37. Wu, Y., Wang, F., Lu, K., Lv, M., and Zhao, Y., Self-assembled dipeptide-graphene nanostructures onto an electrode surface for highly sensitive amperometric hydrogen peroxide biosensors, Sens. Actuat. B: Chem., 2017, vol. 244, p. 1022.

    Article  CAS  Google Scholar 

  38. Suarez, G., Santschi, C., Martin, O.J., and Slaveykova, V.I., Biosensor based on chemically-designed anchorable cytochrome c for the detection of H2O2 released by aquaticells, Biosens. Bioelectron., 2013, vol. 42, p. 385.

    Article  CAS  Google Scholar 

  39. Zhang, P., Guo, D., and Li, Q., Maganese oxide ultrathin nanosheets sensors for non-enzymatic detection of H2O2, Mater. Lett., 2014, vol. 125, p. 202.

    Article  CAS  Google Scholar 

  40. Karimi, A., Husain, S., Hosseini, M., Azar, P.A., and Ganjali, M., Rapid and sensitive detection of hydrogen peroxide in milk by enzyme-free eelctrochemiluminesence sensor based on a polypyrrole-cerium oxide nanocomposite, Sens. Actuat. B: Chem., 2018, vol. 271, p. 90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rafipour.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamleh, Z., Rafipour, R. & Kashanian, S. Protein-Based Nanobiosensor for Electrochemical Determination of Hydrogen Peroxide. Russ J Electrochem 55, 962–969 (2019). https://doi.org/10.1134/S1023193519100094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519100094

Keywords:

Navigation