Skip to main content
Log in

Formation Mechanism and Numerical Model of Quartz in Fine-Grained Organic-Rich Shales: A Case Study of Wufeng and Longmaxi Formations in Western Hubei Province, South China

  • Petroleum, Natural Gas Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The difference in quartz types in shales not only affects the porosity and permeability of the rocks, but also reflects the difference in the sedimentary environments. We established the formation mechanism and numerical model of quartz in shales of Wufeng and Longmaxi formations in the Wangjiawan Section, South China, based on thin-section studies using SEM (scanning electron microscope), SEM-CL (cathodoluminescence), XRD (X-ray diffraction) and geochemical analyses. There are two types of quartz in the shales: detrital quartz and authigenic quartz. Detrital quartz is mostly silt-size, typically ranging from 10 to 60 μm in size and subangular to angular monocrystal in shape, and brighter than authigenic quartz by CL intensity; authigenic quartz is present in two phases in shape: grain overgrowths and crystallite grains. Overgrowth surfaces are subhedral. Crystallite grains are typically less than 10 μm in size, euhedral or subhedral monocrystal in shape. Authigenic quartz can be subdivided into biogenic quartz and clay mineral transformed quartz according to the source of silicon. In the numerical model, the content of detrital quartz is relatively consistent (20%); the content of biogenic quartz ranges from 40% to 70%, with a sharp fall (0–30%) in the Guanyinqiao mudstone. During the Katian, a lower anoxic and dense water column make the dissolution of biogenic silica well preserved. Biogenic quartz is the major contributor to the sediment. During the early Hirnantian interval, due to the drop of sea level and the oxygenation of seafloor, the sediment is mainly composed of clay transformed quartz and detrital quartz. During the latest Hirnatian and Rhuddanian, rapid sea level rise and anoxic ocean enhance the preservation of the biogenic silica, thereby biogenic quartz re-emerges as the major contributors to the sediment. Authigenic crystallite grains and grain overgrowths have filled in primary pore space and have decreased the interparticle porosity, however, as a rigid framework, they can suppress compaction and maintain the internal pore structure. The formation of authigenic quartz results in the increase of total quartz, which fortifies the brittleness of rocks and is beneficial to the development of shale gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Abercrombie, H. J., Hutcheon, I. E., Bloch, J. D., et al., 1994. Silica Activity and the Smectite-Illite Reaction. Geology, 22(6): 539–542. https://doi.org/10.1130/0091-7613(1994)022<0539:saatsi>2.3.co;2

    Google Scholar 

  • Bjørlykke, K., Egeberg, P. K., 1993. Quartz Cementation in Sedimentary Basins. AAPG Bulletin, 77(9): 1538–1548

    Google Scholar 

  • Blatt, H., Schultz, D. J., 1976. Size Distribution of Quartz in Mudrocks. Sedimentology, 23(6): 857–866. https://doi.org/10.1111/j.1365-3091.1976.tb00113.x

    Google Scholar 

  • Blood, R., Lash, G., Bridges, L., 2013. Biogenic Silica in the Devonian Shale Succession of the Appalachian Basin, USA. AAPG Search and Discovery Article 50864

    Google Scholar 

  • Boggs, S. Jr., 2006. Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press, Cambridge. 177

    Google Scholar 

  • Boström, K., Kraemer, T., Gartner, S., 1973. Provenance and Accumulation Rates of Opaline Silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific Pelagic Sediments. Chemical Geology, 11(2): 123–148. https://doi.org/10.1016/0009-2541(73)90049-1

    Google Scholar 

  • Chen, X., Rong, J. Y., Mitchell, C. E., et al., 2000. Late Ordovician to Earliest Silurian Graptolite and Brachiopod Biozonation from the Yangtze Region, South China, with a Global Correlation. Geological Magazine, 137(6): 623–650. https://doi.org/10.1017/s0016756800004702

    Google Scholar 

  • Chen, X., Rong, J. Y., Fan, J. X., et al., 2006. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Hirnantian Stage the Uppermost of the Ordovician System). Episodes, 29(3): 183–196. https://doi.org/10.18814/epiiugs/2006/v29i3/004

    Google Scholar 

  • Chen, X., Rong, J. Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3/4): 353–372. https://doi.org/10.1016/s0031.0182(03)00736-3

    Google Scholar 

  • Chen, X., Melchin, M. J., Sheets, H. D., et al., 2005. Patterns and Processes of Latest Ordovician Graptolite Extinction and Recovery Based on Data from South China. Journal of Paleontology, 79(5): 842–861. https://doi.org/10.1666/0022-3360

    Google Scholar 

  • Day-Stirrat, R. J., Milliken, K. L., Dutton, S. P., et al., 2010. Open-System Chemical Behavior in Deep Wilcox Group Mudstones, Texas Gulf Coast, USA. Marine and Petroleum Geology, 27(9): 1804–1818. https://doi.org/10.1016/j.marpetgeo.2010.08.006

    Google Scholar 

  • Dowey, P. J., Taylor, K. G., 2017. Extensive Authigenic Quartz Overgrowths in the Gas-Bearing Haynesville-Bossier Shale, USA. Sedimentary Geology, 356: 15–25. https://doi.org/10.1016/j.sedgeo.2017.05.001

    Google Scholar 

  • Egeberg, P. K., Aagaard, P., 1989. Origin and Evolution of Formation Waters from Oil Fields on the Norwegian Shelf. Applied Geochemistry, 4(2): 131–142. https://doi.org/10.1016/0883-2927(89)90044-9

    Google Scholar 

  • Finnegan, S., Bergmann, K., Eiler, J. M., et al., 2011. The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation. Science, 331(6019): 903–906. https://doi.org/10.1126/science.1200803

    Google Scholar 

  • Harris, N. B., Miskimins, J. L., Mnich, C. A., 2011. Mechanical Anisotropy in the Woodford Shale, Permian Basin: Origin, Magnitude, and Scale. The Leading Edge, 30(3): 284–291. https://doi.org/10.1190/1.3567259

    Google Scholar 

  • Isaacs, C. M., 1981. Porosity Reduction during Diagenesis of the Monterey Formation, Santa Barbara Coastal Area, California: Abstract. AAPG Bulletin, 65(5): 940–941

    Google Scholar 

  • Isaacs, C. M., 1982. Influence of Rock Composition on Kinetics of Silica Phase Changes in the Monterey Formation, Santa Barbara Area, California. Geology, 10(6): 304. https://doi.org/10.1130/0091-.7613(1982)10<304:iorcok>2.0.co;2

    Google Scholar 

  • Jiang, Z. X., Duan, H. J., Liang, C., et al., 2017. Classification of Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Journal of Earth Science, 28(6): 693–976. https://doi.org/10.1007/s12583-016-0920-0

    Google Scholar 

  • Jurkowska, A., Świerczewska-Gładysz, E., Bąk, M., et al., 2019. The Role of Biogenic Silica in the Formation of Upper Cretaceous Pelagic Carbonates and Its Palaeoecological Implications. Cretaceous Research, 93: 170–187. https://doi.org/10.1016/j.cretres.2018.09.009

    Google Scholar 

  • Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential. Journal of Earth Science, 28(6): 1020–1031. https://doi.org/10.1007/s12583-016-0932-x

    Google Scholar 

  • Liu, Z. H., Algeo, T. J., Guo, X. S., et al., 2017. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China): Tectonic or Glacio-Eustatic Control?. Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 59–76. https://doi.org/10.1016/j.palaeo.2016.11.007

    Google Scholar 

  • McLennan, S. M., Taylor, S. R., McCulloch, M. T., et al., 1990. Geochemical and Nd-Sr Isotopic Composition of Deep-Sea Turbidites: Crustal Evolution and Plate Tectonic Associations. Geochimica et Cosmochimica Acta, 54(7): 2015–2050. https://doi.org/10.1016/0016-7037(90)90269-q

    Google Scholar 

  • Mendhe, V. A., Mishra, S., Khangar, R. G., et al., 2017. Organo-Petrographic and Pore Facets of Permian Shale Beds of Jharia Basin with Implications to Shale Gas Reservoir. Journal of Earth Science, 28(5): 897–916. https://doi.org/10.1007/s12583-017-0779-8

    Google Scholar 

  • Metcalfe, L., 1994. Late Palaeozoic and Mesozoic Palaeogeography of Eastern Pangaea and Tethys. Canada Society of Petroleum Geologists Memoir, 17: 97–111

    Google Scholar 

  • Milliken, K. L., 2014. A Compositional Classification for Grain Assemblages in Fine-Grained Sediments and Sedimentary Rocks. Journal of Sedimentary Research, 84(12): 1185–1199

    Google Scholar 

  • Milliken, K. L., Day-Stirrat, R. J., 2013. Cementation in Mudrocks: Brief Review with Examples from Cratonic Basin Mudrocls. In: Chatellier, J., Jarvie, D., eds., AAPG Memoir, 103: 133–150

    Google Scholar 

  • Milliken, K. L., Ergene, S. M., Ozkan, A., 2016. Quartz Types, Authigenic and Detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sedimentary Geology, 339: 273–288. https://doi.org/10.1016/j.sedgeo.2016.03.012

    Google Scholar 

  • Milliken, K. L., Esch, W. L., Reed, R. M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8): 1553–1578. https://doi.org/10.1306/12011111129

    Google Scholar 

  • Mondol, N. H., Bjorlykke, K., Jahren, J., et al., 2007. Experimental Mechanical Compaction of Clay Mineral Aggregates-Changes in Physical Properties of Mudstones during Burial. Marine and Petroleum Geology, 24(5): 289–311. https://doi.org/10.1016/j.marpetgeo.2007.03.006

    Google Scholar 

  • Nadeau, P. H., Peacor, D. R., Yan, J., et al., 2002. I-S Precipitation in Pore Space as the Cause of Geopressuring in Mesozoic Mudstones, Egersund Basin, Norwegian Continental Shelf. American Mineralogist, 87(11/12): 1580–1589. https://doi.org/10.2138/am-2002-11-1208

    Google Scholar 

  • Nelson, D. M., Tréguer, P., Brzezinski, M. A., et al., 1995. Production and Dissolution of Biogenic Silica in the Ocean: Revised Global Estimates, Comparison with Regional Data and Relationship to Biogenic Sedimentation. Global Biogeochemical Cycles, 9(3): 359–372. https://doi.org/10.1029/95gb01070

    Google Scholar 

  • Peltonen, C., Marcussen, O., Bjorlykke, K., et al., 2009. Clay Mineral Diagenesis and Quartz Cementation in Mudstones: The Effects of Smectite to Illite Reaction on Rock Properties. Marine and Petroleum Geology, 26(6): 887–898. https://doi.org/10.1016/j.marpetgeo.2008.01.021

    Google Scholar 

  • Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325–394. https://doi.org/10.1016/s0009-2541(97)00150-2

    Google Scholar 

  • Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713–1744. https://doi.org/10.1306/03051514151

    Google Scholar 

  • Ran, B., Liu, S. G., Jansa, L., et al., 2015. Origin of the Upper Ordovician-Lower Silurian Cherts of the Yangtze Block, South China, and Their Palaeogeographic Significance. Journal of Asian Earth Sciences, 108: 1–17. https://doi.org/10.1016/j.jseaes.2015.04.007

    Google Scholar 

  • Sprunt, E. S., 1981. Causes of Quartz Cathodoluminescence Colors. Scanning Electron Microscopy, 1: 525–535

    Google Scholar 

  • Środoñ, J., 1999. Nature of Mixed-Layer Clays and Mechanisms of Their Formation and Alteration. Annual Review of Earth and Planetary Sciences, 27(1): 19–53. https://doi.org/10.1146/annurev.earth.27.1.19

    Google Scholar 

  • Stixrude, L., Peacor, D. R., 2002. First-Principles Study of Illite-Smectite and Implications for Clay Mineral Systems. Nature, 420(6912): 165–168. https://doi.org/10.1038/nature01155

    Google Scholar 

  • Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician-Silurian Transition, South China: Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1): 111–130. https://doi.org/10.1016/j.gr.2008.06.004

    Google Scholar 

  • Thyberg, B., Jahren, J., Winje, T., et al., 2010. Quartz Cementation in Late Cretaceous Mudstones, Northern North Sea: Changes in Rock Properties due to Dissolution of Smectite and Precipitation of Micro-Quartz Crystals. Marine and Petroleum Geology, 27(8): 1752–1764. https://doi.org/10.1016/j.marpetgeo.2009.07.005

    Google Scholar 

  • Tréguer, P. J., De La Rocha, C. L., 2013. The World Ocean Silica Cycle. Annual Review of Marine Science, 5(1): 477–501. https://doi.org/10.1146/annurev-marine-121211-172346

    Google Scholar 

  • Tréguer, P., Bowler, C., Moriceau, B., et al., 2017. Influence of Diatom Diversity on the Ocean Biological Carbon Pump. Nature Geoscience, 11(1): 27–37. https://doi.org/10.1038/s41561-017-0028-x

    Google Scholar 

  • van de Kamp, P. C., 2008. Smectite-Illite-Muscovite Transformations, Quartz Dissolution, and Silica Release in Shales. Clays and Clay Minerals, 56(1): 66–81. https://doi.org/10.1346/ccmn.2008.0560106

    Google Scholar 

  • Wang, K., Orth, C. J., Attrep, M. Jr., et al., 1993. The Great Latest Ordovician Extinction on the South China Plate: Chemostratigraphic Studies of the Ordovician-Silurian Boundary Interval on the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 104(1/2/3/4): 61–79. https://doi.org/10.1016/0031-0182(93)90120-8

    Google Scholar 

  • Wedepohl, K. H., 1971. Environmental Influences on the Chemical Composition of Shales and Clays. In: Ahrens, L. H., Press, F., Runcorn, S. K., et al., eds., Physics and Chemistry of the Earth, Vol. 8. Oxford, Pergamon. 307–331

    Google Scholar 

  • Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 1: Bulk Properties, Multi-Scale Geometry and Gas Adsorption. Journal of Earth Science, 28(5): 739–757. https://doi.org/10.1007/s12583-017-0732-x

    Google Scholar 

  • Worden, R. H., Morad, S., 2000. Quartz Cementation in Oil Field Sandstones: A Review of the Key Controversies. In: Worden, R. H., Morad, S., eds., Quartz Cementation in Sandstones. Alden Press, Oxford, Northampton. 1–20

    Google Scholar 

  • Wright, A. M., Ratcliffe, K. T., Spain, D., 2010. Application of Inorganic Whole Rock Geochemistry to Shale Resource Plays. Canadian Unconventional Resources and International Petroleum Conference, 19–21 October, Calgary, Alberta, Canada. 19–21. https://doi.org/10.2118/137946-ms

    Google Scholar 

  • Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1/2): 65–108. https://doi.org/10.1016/0037-0738(87)90017-0

    Google Scholar 

  • Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2009. Geochemical Changes across the Ordovician-Silurian Transition on the Yangtze Platform, South China. Science in China Series D: Earth Sciences, 52(1): 38–54. https://doi.org/10.1007/s11430-008-0143-z

    Google Scholar 

  • Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2010. Large-Scale Climatic Fluctuations in the Latest Ordovician on the Yangtze Block, South China. Geology, 38(7): 599–602. https://doi.org/10.1130/g30961.1

    Google Scholar 

  • Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2012. Predominance of Stratified Anoxic Yangtze Sea Interrupted by Short-Term Oxygenation during the Ordo-Silurian Transition. Chemical Geology, 291: 69–78. https://doi.org/10.1016/j.chemgeo.2011.09.015

    Google Scholar 

  • Zhang, T. S., Kershaw, S., Wan, Y., et al., 2000. Geochemical and Facies Evidence for Palaeoenvironmental Change during the Late Ordovician Hirnantian Glaciation in South Sichuan Province, China. Global and Planetary Change, 24(2): 133–152. https://doi.org/10.1016/s0921-8181(99)00063-6

    Google Scholar 

  • Zhao, J. H., Jin, Z. K., Jin, Z. J., et al., 2017. Origin of Authigenic Quartz in Organic-Rich Shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Pore Evolution. Journal of Natural Gas Science and Engineering, 38: 21–38. https://doi.org/10.1016/j.jngse.2016.11.037

    Google Scholar 

  • Zhu, B., Jiang, S. Y., Pi, D. H., et al., 2018. Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open Vs. Restricted Basin Conditions. Journal of Earth Science, 29(2): 342–352. https://doi.org/10.1007/s12583-017-0907-5

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 41690131, 41572327, 4127300), the Natural Science Foundation of Hubei Province (No. 2019CFA028), and the Program of Introducing Talents of Discipline to Universities of China (No. B14031). We appreciate constructive reviews from the anonymous reviewers and the editors. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1247-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detian Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yan, D., Drawarh, H.J. et al. Formation Mechanism and Numerical Model of Quartz in Fine-Grained Organic-Rich Shales: A Case Study of Wufeng and Longmaxi Formations in Western Hubei Province, South China. J. Earth Sci. 31, 354–367 (2020). https://doi.org/10.1007/s12583-019-1247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-1247-4

Key words

Navigation