Skip to main content
Log in

Enhancing Water Solubility and Stability of Natamycin by Molecular Encapsulation in Methyl-β-Cyclodextrin and its Mechanisms by Molecular Dynamics Simulations

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In this study, the antifungal compound natamycin was encapsulated in methyl-β-cyclodextrin (heptakis(2,6-di-O-methyl)-β-cyclodextrin, Me-β-CD) to improve its aqueous solubility and stability. The aqueous solubilities of natamycin in the presence of β-CD, 2-hydroxypropyl-β-CD, 6-O-α-maltosyl-β-CD, and Me-β-CD were compared. The Me-β-CD showed the best result to increase the solubility of natamycin in aqueous. The pH stability of natamycin was improved by the formation of inclusion complex with Me-β-CD, especially at acidic conditions. The degradation of natamycin under UV-light exposure followed first-order kinetics with half-life times (t1/2) of 59.2 and 157.5 min in pure form and Me-β-CD inclusion complex, respectively. The in vitro antifungal activities of natamycin/Me-CD complex against Aspergillus niger food pathogen were evaluated. The results demonstrated that the natamycin/Me-CD complex could effectively improve the aqueous solubility and photostability of natamycin without compromising in antifungal activities. Finally, the molecular inclusion mechanisms and geometrical configurations of the natamycin/Me-CD complex were studied using molecular dynamics simulations. This research may lead to the development of more effective inclusion-based delivery systems to encapsulate and protect lipophilic antimicrobial agents for food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.P.O. Resa, R.J. Jagusb, L.N. Gerschenson, Food Control 35, 101–108 (2014)

    Article  Google Scholar 

  2. J.L. Koontz, J.E. Marcy, J. Agric. Food Chem. 57, 7106–7110 (2003)

    Article  Google Scholar 

  3. E. Cevher, D. Şensoy, M. Zloh, L. Mülazımoğlu, J. Pharm. Sci. 97, 4319–4335 (2008)

    Article  CAS  Google Scholar 

  4. S. Ho, Y.Y. Thoo, D.J. Young, L.F. Siow, LWT–Food Sci. Technol. 86, 555–565 (2017)

    Article  CAS  Google Scholar 

  5. E.J. Pérez-Monterroza, A.M. Chaux-Gutiérrez, C.M.L. Franco, V.R. Nicoletti, Food Biophys. 13, 343–352 (2018)

    Article  Google Scholar 

  6. S. Ho, Y.Y. Thoo, D.J. Young, L.F. Siow, LWT–Food Sci. Technol. 100, 368–373 (2019)

    Article  CAS  Google Scholar 

  7. H. Pu, Q. Sun, P. Tang, L. Zhao, Q. Li, Y. Liu, Food Chem. 260, 183–192 (2018)

    Article  CAS  Google Scholar 

  8. A. Celebioglu, Z.I. Yildiz, T. Uyar, J. Agric. Food Chem. 66, 457–466 (2018)

    Article  CAS  Google Scholar 

  9. J.L. Koontz, J.E. Marcy, W.E. Barbeau, S.E. Duncan, J. Agric. Food Chem. 51, 7111–7114 (2003)

    Article  CAS  Google Scholar 

  10. Y.F. Li, J. Jin, Q. Guo, Y.M. Ha, Q.P. Li, Carbohydr. Polym. 125, 288–300 (2015)

    Article  CAS  Google Scholar 

  11. L. Szente, J. Szejtli, Adv. Drug Deliv. Rev. 36, 17–28 (1999)

    Article  CAS  Google Scholar 

  12. L. Angiolini, M. Agnes, B. Cohen, K. Yannakopoulou, A. Douhal, Int. J. Pharm. 531(2), 668–675 (2017)

    Article  CAS  Google Scholar 

  13. A. Duarte, A. Martinho, A. Luis, A. Figueiras, M. Oleastro, F.C. Domingues, LWT–Food Sci. Technol. 63, 1254–1260 (2015)

    Article  CAS  Google Scholar 

  14. L.L. Wang, S.S. Li, P.X. Tang, J. Yan, K.L. Xu, H. Li, Carbohydr. Polym. 129, 9–16 (2015)

    Article  CAS  Google Scholar 

  15. B.G. Liu, Y. Li, H.C. Xiao, Y.L. Liu, H.Z. Mo, H.J. Ma, J. Food Sci. 80(6), C1156–C1161 (2015)

    Article  CAS  Google Scholar 

  16. B.G. Liu, W. Li, J. Zhao, Y. Liu, X.A. Zhu, G.Z. Liang, Food Chem. 141(2), 900–906 (2013)

    Article  CAS  Google Scholar 

  17. Q. Ding, X. Cui, G.H. Xu, C.H. He, K.J. Wu, AICHE J. 64, 4080–4088 (2018)

    Article  CAS  Google Scholar 

  18. S. Fang, H.J. Xie, H.Y. Chen, L. Wang, S.Y. Tian, J. Chem. Thermodyn. 113, 144–150 (2017)

    Article  CAS  Google Scholar 

  19. J. He, C. Christophe, X.G. Shao, W.S. Cai, J. Phys. Chem. C 118, 24173–24180 (2014)

    Article  CAS  Google Scholar 

  20. Y.M. Te Welscher, H.H. Ten Napel, M.M. Balagué, C.M. Souza, H. Riezman, B. De Kruijff, E. Breukink, J. Biol. Chem. 283, 6393–6401 (2008)

    Article  Google Scholar 

  21. J.P. Fan, T.T. Yuan, J.X. Yu, X.H. Zhang, Y.H. Cao, J. Chem. Eng. Data 63, 642–650 (2018)

    Article  CAS  Google Scholar 

  22. W. Khuntawe, M. Karttunend, J. Wong-Ekkabut, Phys. Chem. Chem. Phys. 19, 24219–24229 (2017)

    Article  Google Scholar 

  23. P.M. Kells, H. Ouellet, J. Santos-Aberturas, J.F. Aparicio, L.M. Podust, Chem. Biol. 17(8), 841–851 (2010)

    Article  CAS  Google Scholar 

  24. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, SoftwareX 1(2), 19–25 (2015)

    Article  Google Scholar 

  25. X. Daura, A.E. Mark, W.F. van Gunsteren, J. Comput. Chem. 19, 535–547 (1998)

    Article  CAS  Google Scholar 

  26. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  Google Scholar 

  27. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)

    Article  Google Scholar 

  28. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182–7190 (1981)

    Article  CAS  Google Scholar 

  29. A.R. Green, J.K. Guillory, J. Pharm. Sci. 78, 427–431 (1989)

    Article  CAS  Google Scholar 

  30. G.J. You, L.L. Sun, X.X. Cao, H.H. Li, M. Wang, Y.N. Liu, X.L. Ren, LWT–Food Sci. Technol. 94, 172–177 (2018)

    Article  CAS  Google Scholar 

  31. C.Q. Sun, P. Lalitha, N.V. Prajna, R. Karpagam, M. Geetha, K.S. O'Brien, Ophthalmology 121, 1495–1500 (2014)

    Article  Google Scholar 

  32. T. Loftsson, M.E. Brewster, J. Pharm. Sci. 101, 3019–3032 (2012)

    Article  CAS  Google Scholar 

  33. J.M. Hamilton-Miller, J. Pharm. Pharmacol. 25, 401–407 (1973)

    Article  CAS  Google Scholar 

  34. Z. Shao, S. Fang, Y. Li, J. Chen, Y. Meng, Int. J. Biol. Macromol. 118(Pt B), 2208–2215 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Key Research and Development Project of Zhejiang Province, China (2019C02088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Fang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Peng, X., Liang, X. et al. Enhancing Water Solubility and Stability of Natamycin by Molecular Encapsulation in Methyl-β-Cyclodextrin and its Mechanisms by Molecular Dynamics Simulations. Food Biophysics 15, 188–195 (2020). https://doi.org/10.1007/s11483-019-09620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09620-z

Keywords

Navigation