Skip to main content

Advertisement

Log in

Preparation of Nepheline-Based Ceramic Foams from Basalt Tailing and Black Cotton Soil

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A type of ultra-light weighted, low-thermally conductive but mechanically strong ceramic foams (CF) were fabricated via the direct foaming method of using basalt tailings (BT) and black cotton soil (BCS) as main components. The sodium hydroxide (NaOH) dissolved in water glass (Na2SiO3) and calcium carbonate (CaCO3) were used as fluxing and foaming agents, respectively. The product was demonstrated to have excellent strength-to-density properties (compressive strength > 1.82 MPa, density < 0.57 g/cm3) and a low thermal conductivity (0.057 W/m·K), which meets standards of ASTM C552-14 (Grade 24) or GB/T33500-2017 (Grade L). Factors that affect the physicochemical (bulk density, apparent density, and water absorption) and mechanical properties were investigated, which include dosages of BT, NaOH, and CaCO3. Optimum parameters were found as sintering temperature 850 °C, reaction time 45 min, and dosage of BT/(BT + BCS) = 70% wt., NaOH = 13% wt. versus the total weight of BT and BCS (w(BT + BCS)), and foaming agent CaCO3 = 0.1% wt. versus w(BT + BCS). The crystalline phase in the foamed ceramics was confirmed as nepheline which was produced by desilication of orthoclase or plagioclase with presence of NaOH. This direct foaming method of using the BT + BCS system was proven to be an efficient way to prepare foamed ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Beall, G.H., Rittler, H.L.: Basalt glass ceramics. Am. Ceram. Soc. Bull. 55, 579–582 (1976)

    Google Scholar 

  2. Nishihora, R.K., Rachadel, P.L., Quadri, M.G.N., Hotza, D.: A. Ceramic foams by powder processing. J. Eur. Ceram. Soc. 18, 1339–1350 (1998). https://doi.org/10.1016/S0955-2219(98)00063-6

    Article  Google Scholar 

  3. Cao, J., Rambo, C.R., Sieber, H.: Preparation of Porous Al2O3-Ceramics by Biotemplating of Wood. J. Porous Mater. 11, 163–172 (2004). https://doi.org/10.1023/B:JOPO.0000038012.58705.c9

    Article  Google Scholar 

  4. Kovářík, T., Křenek, T., Rieger, D., Pola, M., Říha, J., Svoboda, M., Beneš, J., Šutta, P., Bělský, P., Kadlec, J.: Synthesis of open-cell ceramic foam derived from geopolymer precursor via replica technique. Mater. Lett. 209, 497–500 (2017). https://doi.org/10.1016/j.matlet.2017.08.081

    Article  Google Scholar 

  5. Jo, I.-H., Shin, K.-H., Soon, Y.-M., Koh, Y.-H., Lee, J.-H., Kim, H.-E.: Highly porous hydroxyapatite scaffolds with elongated pores using stretched polymeric sponges as novel template. Mater. Lett. 63, 1702–1704 (2009). https://doi.org/10.1016/j.matlet.2009.05.017

    Article  Google Scholar 

  6. Rincon, A., Giacomello, G., Pasetto, M., Bernardo, E.: Novel ‘inorganic gel casting’ process for the manufacturing of glass foams. J. Eur. Ceram. Soc. 37, 2227–2234 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.01.012

    Article  Google Scholar 

  7. Nishihora, R.K., Rachadel, P.L., Quadri, M.G.N., Hotza, D.: Manufacturing porous ceramic materials by tape casting-A review. J. Eur. Ceram. Soc. 38, 988–1001 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.11.047

    Article  Google Scholar 

  8. Hammel, E.C., Ighodaro, O.L.R., Okoli, O.I.: Processing and properties of advanced porous ceramics: an application based review. Ceram. Int. 40, 15351–15370 (2014). https://doi.org/10.1016/j.ceramint.2014.06.095

    Article  Google Scholar 

  9. Arcos, D., Vallet-Regí, M.: Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 6, 2874–2888 (2010). https://doi.org/10.1016/j.actbio.2010.02.012

    Article  Google Scholar 

  10. Bai, J., Yang, X., Xu, S., Jing, W., Yang, J.: Preparation of foam glass from waste glass and fly ash. Mater. Lett. 136, 52–54 (2014). https://doi.org/10.1016/j.matlet.2014.07.028

    Article  Google Scholar 

  11. Fernandes, H., Tulyaganov, D., Ferreira, J.: Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents. Ceram. Int. 35, 229–235 (2009). https://doi.org/10.1016/j.ceramint.2007.10.019

    Article  Google Scholar 

  12. Zhang, R., Feng, J., Cheng, X., Gong, L., Li, Y., Zhang, H.: Porous thermal insulation materials derived from fly ash using a foaming and slip casting method. Energy Build. 81, 262–267 (2014). https://doi.org/10.1016/j.enbuild.2014.06.028

    Article  Google Scholar 

  13. Chen, X., Lu, A., Qu, G.: Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent. Ceram. Int. 39, 1923–1929 (2013). https://doi.org/10.1016/j.ceramint.2012.08.042

    Article  Google Scholar 

  14. Wang, H., Feng, K., Zhou, Y., Sun, Q., Shi, H.: Effects of Na2B4O7·5H2O on the properties of foam glass from waste glass and titania-bearing blast furnace slag. Mater. Lett. 132, 176–178 (2014). https://doi.org/10.1016/j.matlet.2014.06.018

    Article  Google Scholar 

  15. Ding, L., Ning, W., Wang, Q., Shi, D., Luo, L.: Preparation and characterization of glass–ceramic foams from blast furnace slag and waste glass. Mater. Lett. 141, 327–329 (2015). https://doi.org/10.1016/j.matlet.2014.11.122

    Article  Google Scholar 

  16. Ding, L., Ning, W., Wang, Q., Shi, D., Luo, L.: Preparation of glass-ceramic foams from the municipal solid waste slag produced by plasma gasification process. Mater. Lett. 128, 68–70 (2014). https://doi.org/10.1016/j.matlet.2014.04.097

    Article  Google Scholar 

  17. Xi, X., Xu, L., Shui, A., Wang, Y., Naito, M.: Effect of silicon carbide particle size and CaO content on foaming properties during firing and microstructure of porcelain ceramics. Ceram. Int. 40, 12931–12938 (2014). https://doi.org/10.1016/j.ceramint.2014.04.153

    Article  Google Scholar 

  18. Kayali, O.: Fly ash lightweight aggregates in high performance concrete. Constr. Build. Mater. 22, 2393–2399 (2008). https://doi.org/10.1016/j.conbuildmat.2007.09.001

    Article  Google Scholar 

  19. Marangoni, M., Secco, M., Parisatto, M., Artioli, G., Bernardo, E., Colombo, P., Altlasi, H., Binmajed, M., Binhussain, M.: Cellular glass-ceramics from a self foaming mixture of glass and basalt scoria. J. Non-Cryst. Solids. 403, 38–46 (2014). https://doi.org/10.1016/j.jnonclysol.2014.06.016

    Article  Google Scholar 

  20. Zhu, M., Ji, R., Li, Z., Wang, H., Liu, L., Zhang, Z.: Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Constr. Build. Mater. 112, 398–405 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.183

    Article  Google Scholar 

  21. Jamshaid, H., Mishra, R.: A green material from rock: basalt fiber-a review. J. Text. I. 107, 923–937 (2016). https://doi.org/10.1080/00405000.2015.1071940

    Article  Google Scholar 

  22. Swink, M.. Continuous filament basalt a unique fiber capable of leadership in high temperature applications, in Techtextil North America Symposium Atlanta, GA, USA, (2002)

  23. Fiore, V., Scalici, T., Di Bella, G., Valenza, A.: A review on basalt fibre and its composites. Compos. Part B-Eng. 74, 74–94 (2015)

    Article  Google Scholar 

  24. Khater, G.A., Abdel-Motelib, A., El Manawi, A.W., Abu Safiah, M.O.: Glass-ceramics materials from basaltic rocks and some industrial waste. J. Non-Cryst. Solids. 358, 1128–1134 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.02.010

    Article  Google Scholar 

  25. Abdel-Hameed, S.A.M., Bakr, I.M.: Effect of alumina on ceramic properties of cordierite glass–ceramic from basalt rock. J. Eur. Ceram. Soc. 27, 1893–1897 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.016

    Article  Google Scholar 

  26. Yilmaz, S., Özkan, O.T., Günay, V.: Crystallization kinetics of basalt glass. Ceram. Int. 22, 477–481 (1996). https://doi.org/10.1016/0272-8842(95)00118-2

    Article  Google Scholar 

  27. Cetin, S., Marangoni, M., Bernardo, E.: Lightweight glass–ceramic tiles from the sintering of mining tailings. Ceram. Int. 41, 5294–5300 (2015). https://doi.org/10.1016/j.ceramint.2014.12.049

    Article  Google Scholar 

  28. Yılmaz, S., Bayrak, G., Sen, S., Sen, U.: Structural characterization of basalt-based glass–ceramic coatings. Mater. Design. 27, 1092–1096 (2006). https://doi.org/10.1016/j.matdes.2005.04.004

    Article  Google Scholar 

  29. Miao, S., Shen, Z., Wang, X., Luo, F., Huang, X., Wei, C.: Stabilization of highly expansive black cotton soils by means of geopolymerization. J. Mater. Civil Eng. 29, 04017170 (2017)

    Article  Google Scholar 

  30. Bhargavi, P., Jyothi, S.: Applying naive bayes data mining technique for classification of agricultural land soils. Int. J. Comput. Sci. Netw Secur 9, 117–122 (2009)

    Google Scholar 

  31. Gadre, A.D., Chandrasekaran, V.S.: Swelling of black cotton soil using centrifuge modeling. J. Geotech. Eng. 120, 914–919 (1994)

    Article  Google Scholar 

  32. Mehta, K.S., Sonecha, R.J., Daxini, P.D., Ratanpara, P.B., Gaikwad, K.S.: Analysis of engineering properties of black cotton soil & stabilization using by lime. Int. J. Eng. Res. Appl. 4, 25–32 (2014)

    Google Scholar 

  33. Singh, S.K., Gupta, P.K.: Critical review of ground improvement techniques for highways. Indian Highw 30, 5–14 (2002)

    Google Scholar 

  34. Sparks, R.S.J.: The dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol. Geoth. Res. 3, 1–37 (1978). https://doi.org/10.1016/0377-0273(78)90002-1

    Article  Google Scholar 

  35. EN, U.: Determination of water absorption, apparent porosity, apparent relative density and bulk density ISO 10545-3 (1995)

  36. Lu, X., Caps, R., Fricke, J., Alviso, C.T., Pekala, R.W.: Correlation between structure and thermal conductivity of organic aerogels. J. Non-Cryst. Solids. 188, 226–234 (1995). https://doi.org/10.1016/0022-3093(95)00191-3

    Article  Google Scholar 

  37. Liang, C., et al.: Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces. 9, 29950 (2017). https://doi.org/10.1021/acsami.7b07735

    Article  Google Scholar 

  38. Hajimohammadi, A., Ngo, T., Mendis, P., Nguyen, T., Kashani, A., van Deventer, J.S.J.: Pore characteristics in one-part mix geopolymers foamed by H2O2: the impact of mix design. Mater. Design. 130, 381–391 (2017). https://doi.org/10.1016/j.matdes.2017.05.084

    Article  Google Scholar 

  39. Hajimohammadi, A., Ngo, T., Mendis, P.: Enhancing the strength of pre-made foams for foam concrete applications. Cement. Concrete Comp. 87, 164–171 (2018). https://doi.org/10.1016/j.cemconcomp.2017.12.014

    Article  Google Scholar 

  40. Ivanov, K.S.: Study of sodium silicate system firing during glass ceramic foam preparation. Refract. Ind. Ceram. 56, 621–625 (2016). https://doi.org/10.1007/s11148-016-9900-2

    Article  Google Scholar 

  41. Kumar, P., Topin, F.: State-of-the-art of pressure drop in open-cell porous foams: review of experiments and correlations. J. Fluids Eng. 139, 111401–111401 (2017). https://doi.org/10.1115/1.4037034

    Article  Google Scholar 

  42. State General Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine China National Standardization Administration: 2017. External wall insulation foam ceramic GB/T 33500 – 2017. Standards Press of China

  43. Marcial, J., Crum, J., Neill, O., McCloy, J.: Nepheline structural and chemical dependence on melt composition. Am. Miner. 101, 266–276 (2016). https://doi.org/10.2138/am-2016-5370

    Article  Google Scholar 

  44. Schairer, J.F., Yoder, H.S. Jr.: The nature of residual liquids from crystallization, with data on the system nepheline-diopside-silica. Am. J. Sci. A 258, 273–283 (1960)

    Google Scholar 

  45. Platt, R.G., Edgar, A.D.: The system nepheline-diopside-sanidine and its significance to the genesis of melilite- and olivine-bearing alkaline rocks. J. Geol. 80, 224–236 (1972). https://doi.org/10.1086/627726

    Article  Google Scholar 

  46. Martín, M.I., Andreola, F., Barbieri, L., Bondioli, F., Lancellotti, I., Rincón, J.M., Romero, M.: Crystallisation and microstructure of nepheline–forsterite glass-ceramics. Ceram. Int. 39, 2955–2966 (2013). https://doi.org/10.1016/j.ceramint.2012.09.072

    Article  Google Scholar 

  47. Ionescu, C., Hoeck, V., Ghergari, L.: Electron microprobe analysis of ancient ceramics: a case study from Romania. Appl. Clay Sci. 53, 466–475 (2011). https://doi.org/10.1016/j.clay.2010.09.009

    Article  Google Scholar 

  48. Zhang, P., Huang, J., Shen, Z., Wang, X., Luo, F., Zhang, P., Wang, J., Miao, S.: Fired hollow clay bricks manufactured from black cotton soils and natural pozzolans in Kenya. Constr. Build Mater. 141, 435–441 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.018

    Article  Google Scholar 

  49. Otterson, D.A.: On the presence of NaOH in crystalline NaCl. J. Chem. Phys. 33, 227–229 (1960). https://doi.org/10.1063/1.1731086

    Article  Google Scholar 

  50. Menkhaus, T., Hrma, P., Li, H.: Kinetics of nepheline crystallization from high-level waste glass. Ceram. Trans. (USA) 107, 461–468 (1999)

    Google Scholar 

  51. Schairer, J.F., Bowen, N.L.: The system leucite-diopside-silica. Am. J. Sci. 235, 289–309 (1938)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supports by the Province/Jilin University co-construction project - funds for new materials - (SXGJSF2017-3), National Natural Science Foundation of China (U1607122, 51874145), Qinghai Basic Program under Grant (2017-ZJ-705), and basalt original rock and product performance testing project (3R218C562416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiding Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Shi, J., Zhu, F. et al. Preparation of Nepheline-Based Ceramic Foams from Basalt Tailing and Black Cotton Soil. Waste Biomass Valor 11, 2331–2343 (2020). https://doi.org/10.1007/s12649-018-0514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0514-4

Keywords

Navigation