Skip to main content
Log in

Effect of hemodialysis on impedance cardiography (electrical velocimetry) parameters in children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Pediatric hemodialysis (HD) patients have a high incidence of cardiovascular morbidity and mortality. The study aim was to investigate whether impedance cardiography (electrical velocimetry, EV) is suitable as a hemodynamic trend monitoring tool in pediatric patients during HD.

Methods

Measurements by EV were obtained before, during, and after HD in a prospective single-center pediatric observational study. In total, 54 dialysis cycles in four different pediatric patients with end-stage kidney disease on chronic HD were included. EV parameters analyzed were heart rate (HR), stroke volume (SV), stroke volume index (SI), cardiac output (CO), cardiac index (CI), thoracic fluid content (TFC), index of contractility (ICON), stroke volume variation (SVV), variation of ICON (VIC), R-R interval (TRR), pre-ejection period (PEP), left ventricular ejection time (LVET), and systolic time ration (STR). Systemic vascular resistance index (SVRI) was calculated.

Results

EV did measure significant changes in cardiovascular parameters associated with HD. The following parameters increased after HD: HR (9%), SVV (19%), VIC (33%), PEP (8%), and STR (18%). A decrease after HD was measured in SV (18%), SI (18%), CO (10%), CI (10%), TFC (10%), ICON (7%), TRR (7%), LVET (8%), and LVET (8%). SVRI was not affected by HD. The changes were correlated to ultrafiltration. HD cycles without fluid withdrawal also altered cardiovascular parameters.

Conclusions

Pediatric HD with and without fluid withdrawal changes hemodynamic EV monitoring parameters. Possibly EV may be useful to optimize HD management in pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    Article  Google Scholar 

  2. Querfeld U, Schaefer F (2018) Cardiovascular risk factors in children on dialysis: an update. Pediatr Nephrol. https://doi.org/10.1007/s00467-018-4125-x

    Article  Google Scholar 

  3. Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerosp Med 37:1208–1212

    CAS  PubMed  Google Scholar 

  4. Osypka MJ, Bernstein DP (1999) Electrophysiologic principles and theory of stroke volume determination by thoracic electrical bioimpedance. Review. AACN Clin Issues 10:385–399

    Article  CAS  Google Scholar 

  5. Onofriescu M, Mardare NG, Segall L, Voroneanu L, Cuşai C, Hogaş S, Ardeleanu S, Nistor I, Prisadă OV, Sascău R, Covic A (2012) Randomized trial of bioelectrical impedance analysis versus clinical criteria for guiding ultrafiltration in hemodialysis patients: effects on blood pressure, hydration status, and arterial stiffness. Int Urol Nephrol 44:583–591. https://doi.org/10.1007/s11255-011-0022-y

    Article  PubMed  Google Scholar 

  6. Moissl U, Arias-Guillén M, Wabel P, Fontseré N, Carrera M, Campistol JM, Maduell F (2013) Bioimpedance-guided fluid management in hemodialysis patients. Clin J Am Soc Nephrol 8:1575–1582. https://doi.org/10.2215/CJN.12411212

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hur E, Usta M, Toz H, Asci G, Wabel P, Kahvecioglu S, Kayikcioglu M, Demirci MS, Ozkahya M, Duman S, Ok E (2013) Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: a randomized controlled trial. Am J Kidney Dis 61:957–965. https://doi.org/10.1053/j.ajkd.2012.12.017

    Article  PubMed  Google Scholar 

  8. Raaijmakers E, Faes TJ, Scholten RJ, Goovaerts HG, Heethaar RM (1999) A meta-analysis of three decades of validating thoracic impedance cardiography. Crit Care Med 27:1203–1213

    Article  CAS  Google Scholar 

  9. Tomaske M, Knirsch W, Kretschmar O, Balmer C, Woitzek K, Schmitz A, Bauersfeld U, Weiss M, Working Group on Noninvasive Haemodynamic Monitoring in Paediatrics (2009) Evaluation of the Aesculon cardiac output monitor by subxiphoidal Doppler flow measurement in children with congenital heart defects. Eur J Anaesthesiol 26:412–415. https://doi.org/10.1097/EJA.0b013e3283240438

    Article  CAS  PubMed  Google Scholar 

  10. Schubert S, Schmitz T, Weiss M, Nagdyman N, Huebler M, Alexi-Meskishvili V, Berger F, Stiller B (2008) Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery: evaluation of transesophageal Doppler and electric velocimetry. J Clin Monit Comput 22:299–307. https://doi.org/10.1007/s10877-008-9133-0

    Article  PubMed  Google Scholar 

  11. Raue W, Swierzy M, Koplin G, Schwenk W (2009) Comparison of electrical velocimetry and transthoracic thermodilution technique for cardiac output assessment in critically ill patients. Eur J Anaesthesiol 26:1067–1071. https://doi.org/10.1097/EJA.0b013e32832bfd94

    Article  PubMed  Google Scholar 

  12. Wang DJ, Lee IS, Chou AH, Chen CY, Ting PC, Teng YH, Lin JR, Tsai HI (2018) Non-invasive cardiac output measurement with electrical velocimetry in patients undergoing liver transplantation: comparison of an invasive method with pulmonary thermodilution. BMC Anesthesiol 18:138. https://doi.org/10.1186/s12871-018-0600-y

    Article  PubMed  PubMed Central  Google Scholar 

  13. Petter H, Erik A, Björn E, Göran R (2011) Measurement of cardiac output with non-invasive Aesculon impedance versus thermodilution. Clin Physiol Funct Imaging 31:39–47. https://doi.org/10.1111/j.1475-097X.2010.00977.x

    Article  PubMed  Google Scholar 

  14. Trinkmann F, Berger M, Doesch C, Papavassiliu T, Schoenberg SO, Borggrefe M, Kaden JJ, Saur J (2016) Comparison of electrical velocimetry and cardiac magnetic resonance imaging for the non-invasive determination of cardiac output. J Clin Monit Comput 30:399–408. https://doi.org/10.1007/s10877-015-9731-6

    Article  PubMed  Google Scholar 

  15. Schmidt C, Theilmeier G, Van Aken H, Korsmeier P, Wirtz SP, Berendes E, Hoffmeier A, Meissner A (2005) Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth 95:603–610

    Article  CAS  Google Scholar 

  16. Norozi K, Beck C, Osthaus WA, Wille I, Wessel A, Bertram H (2008) Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br J Anaesth 100:88–94

    Article  CAS  Google Scholar 

  17. Noori S, Drabu B, Soleymani S, Seri I (2012) Continuous non-invasive cardiac output measurements in the neonate by electrical velocimetry: a comparison with echocardiography. Arch Dis Child Fetal Neonatal Ed 97:F340–F343. https://doi.org/10.1136/fetalneonatal-2011-301090

    Article  PubMed  Google Scholar 

  18. Grollmuss O, Demontoux S, Capderou A, Serraf A, Belli E (2012) Electrical velocimetry as a tool for measuring cardiac output in small infants after heart surgery. Intensive Care Med 38:1032–1039. https://doi.org/10.1007/s00134-012-2530-3

    Article  PubMed  Google Scholar 

  19. Blohm ME, Obrecht D, Hartwich J, Mueller GC, Kersten JF, Weil J, Singer D (2014) Impedance cardiography (electrical velocimetry) and transthoracic echocardiography for non-invasive cardiac output monitoring in pediatric intensive care patients: a prospective single-center observational study. Crit Care18:603. https://doi.org/10.1186/s13054-014-0603-0

  20. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  CAS  Google Scholar 

  21. Wu TW, Lien RI, Seri I, Noori S (2017) Changes in cardiac output and cerebral oxygenation during prone and supine sleep positioning in healthy term infants. Arch Dis Child Fetal Neonatal Ed 102:F483–F489. https://doi.org/10.1136/archdischild-2016-311769

    Article  PubMed  Google Scholar 

  22. Rodríguez Sánchez de la Blanca A, Sánchez Luna M, González Pacheco N, Arriaga Redondo M, Navarro Patiño N (2018) Electrical velocimetry for non-invasive monitoring of the closure of the ductus arteriosus in preterm infants. Eur J Pediatr 177:229–235. https://doi.org/10.1007/s00431-017-3063-0

    Article  PubMed  Google Scholar 

  23. Freidl T, Baik N, Pichler G, Schwaberger B, Zingerle B, Avian A, Urlesberger B (2017) Haemodynamic transition after birth: a new tool for non-invasive cardiac output monitoring. Neonatology 111:55–60

    Article  Google Scholar 

  24. Osthaus WA, Huber D, Beck C, Winterhalter M, Boethig D, Wessel A, Sümpelmann R (2007) Comparison of electrical velocimetry and transpulmonary thermodilution for measuring cardiac output in piglets. Paediatr Anaesth 17:749–755

    Article  Google Scholar 

  25. Sasaki K, Mutoh T, Mutoh T, Kawashima R, Tsubone H (2017) Electrical velocimetry for noninvasive cardiac output and stroke volume variation measurements in dogs undergoing cardiovascular surgery. Vet Anaesth Analg 44:7–16. https://doi.org/10.1111/vaa.12380

    Article  PubMed  Google Scholar 

  26. Germain MJ, Joubert J, O'Grady D, Nathanson BH, Chait Y, Levin NW (2018) Comparison of stroke volume measurements during hemodialysis using bioimpedance cardiography and echocardiography. Hemodial Int 22:201–208. https://doi.org/10.1111/hdi.12589

    Article  PubMed  Google Scholar 

  27. Sanders M, Servaas S, Slagt C (2019) Accuracy and precision of non-invasive cardiac output monitoring by electrical cardiometry: a systematic review and meta-analysis. J Clin Monit Comput. https://doi.org/10.1007/s10877-019-00330-y

  28. Bornstein A, Zambrano SS, Morrison RS, Spodick DH (1975) Cardiac effects of hemodialysis: noninvasive monitoring by systolic time intervals. Am J Med Sci 269:189–192

    Article  CAS  Google Scholar 

  29. Macdonald IL, Uldall R, Buda AJ (1981) The effect of hemodialysis on cardiac rhythm and performance. Clin Nephrol 15:321–327

    CAS  PubMed  Google Scholar 

  30. Sakka SG, Hanusch T, Thuemer O, Wegscheider K (2007) The influence of venovenous renal replacement therapy on measurements by the transpulmonary thermodilution technique. Anesth Analg 105:1079–1082

    Article  Google Scholar 

  31. Pathil A, Stremmel W, Schwenger V, Eisenbach C (2013) The influence of haemodialysis on haemodynamic measurements using transpulmonary thermodilution in patients with septic shock: an observational study. Eur J Anaesthesiol 30:16–20. https://doi.org/10.1097/EJA.0b013e328358543a

    Article  PubMed  Google Scholar 

  32. Maarek JM, Rubinstein EH, Guo Y, Lane CJ, Campese VM, Holschneider DP (2017) Measurement of cardiac output and blood volume during hemodialysis with fluorescent dye dilution technique. Ann Biomed Eng 45:580–591. https://doi.org/10.1007/s10439-016-1711-6

    Article  PubMed  Google Scholar 

  33. Buchanan C, Mohammed A, Cox E, Köhler K, Canaud B, Taal MW, Selby NM, Francis S, McIntyre CW (2017) Intradialytic cardiac magnetic resonance imaging to assess cardiovascular responses in a short-term trial of Hemodiafiltration and hemodialysis. J Am Soc Nephrol 28:1269–1277. https://doi.org/10.1681/ASN.2016060686

    Article  PubMed  Google Scholar 

  34. Levin NW, de Abreu MHFG, Borges LE, Tavares Filho HA, Sarwar R, Gupta S, Hafeez T, Lev S, Williams C (2018) Hemodynamic response to fluid removal during hemodialysis: categorization of causes of intradialytic hypotension. Nephrol Dial Transplant 33:1643–1649. https://doi.org/10.1093/ndt/gfy048

    Article  CAS  PubMed  Google Scholar 

  35. Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM (2009) Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies--with specific reference to the measurement of cardiac output. Crit Care 13:201. https://doi.org/10.1186/cc7129

    Article  PubMed  PubMed Central  Google Scholar 

  36. Samoni S, Vigo V, Reséndiz LI, Villa G, De Rosa S, Nalesso F, Ferrari F, Meola M, Brendolan A, Malacarne P, Forfori F, Bonato R, Donadio C, Ronco C (2016) Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit Care 20:95. https://doi.org/10.1186/s13054-016-1269-6

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fellahi JL, Brossier D, Dechanet F, Fischer MO, Saplacan V, Gérard JL, Hanouz JL (2015) Early goal-directed therapy based on endotracheal bioimpedance cardiography: a prospective, randomized controlled study in coronary surgery. J Clin Monit Comput 29:351–358. https://doi.org/10.1007/s10877-014-9611-5

    Article  PubMed  Google Scholar 

  38. Bernstein DP (2007) Bernstein-Osypka stroke volume equation for impedance cardiography: citation correction. Intensive Care Med 33:923. https://doi.org/10.1007/s00134-007-0613-3

    Article  PubMed  Google Scholar 

  39. Czyżewski Ł, Wyzgał J, Sierdziński J, Czyżewska E, Smereka J, Szarpak Ł (2017) Comparison of 3 times a week 4- and 5-hour in-center hemodialysis sessions with use of continuous non-invasive hemodynamic monitoring. Ann Transplant 22:346–353

    Article  Google Scholar 

  40. Czyżewski Ł, Wyzgał J, Czyżewska E, Sańko-Resmer J, Szarpak Ł (2017) Assessment of volumetric hemodynamic parameters and body composition in stable renal transplant recipients. Ann Transplant 22:187–198

    Article  Google Scholar 

  41. Singh AT, Mc Causland FR (2017) Osmolality and blood pressure stability during hemodialysis. Review. Semin Dial 30:509–517. https://doi.org/10.1111/sdi.12629

    Article  PubMed  PubMed Central  Google Scholar 

  42. Quail AW, Traugott FM (1981) Effects of changing haematocrit, ventricular rate and myocardial inotropy on the accuracy of impedance cardiography. Clin Exp Pharmacol Physiol 8:335–343

    Article  CAS  Google Scholar 

  43. Hayes W, Paglialonga F (2019) Assessment and management of fluid overload in children on dialysis. Pediatr Nephrol 34:233–242. https://doi.org/10.1007/s00467-018-3916-4

    Article  PubMed  Google Scholar 

  44. Miltényi G, Tory K, Stubnya G, Tóth-Heyn P, Vásárhelyi B, Sallay P, Szabó A, Tulassay T, Dobos M, Reusz GS (2001) Monitoring cardiovascular changes during hemodialysis in children. Pediatr Nephrol 16:19–24

    Article  Google Scholar 

  45. Harambat J, Bonthuis M, Groothoff JW, Schaefer F, Tizard EJ, Verrina E, van Stralen KJ, Jager KJ (2016) Lessons learned from the ESPN/ERA-EDTA registry. Pediatr Nephrol 31:2055–2064. https://doi.org/10.1007/s00467-015-3238-8

    Article  PubMed  Google Scholar 

  46. Niel O, Bastard P, Boussard C, Hogan J, Kwon T, Deschênes G (2018) Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis. Pediatr Nephrol 33:1799–1803. https://doi.org/10.1007/s00467-018-4015-2

    Article  PubMed  Google Scholar 

  47. Hayes W, Allinovi M (2018) Beyond playing games: nephrologist vs machine in pediatric dialysis prescribing. Pediatr Nephrol 33:1625–1627. https://doi.org/10.1007/s00467-018-4021-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

An impedance cardiography Aesculon® monitor was provided free of charge by the manufacturer (Osypka Medical, Berlin, Germany) for the study. Consumables were financed from hospital resources.

Author information

Authors and Affiliations

Authors

Contributions

DS and MEB developed the study design. MW collected, analyzed, and presented part of the data in her medical doctoral thesis. MW, JO, HOP, DS, and MEB significantly contributed to data interpretation. HOP developed the linear mixed model analysis. All authors approved the manuscript.

Corresponding author

Correspondence to Martin E. Blohm.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the local ethical board (“Ethikkommission der Ärztekammer Hamburg”). All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed parental consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 62 kb)

ESM 2

(PDF 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilken, M., Oh, J., Pinnschmidt, H.O. et al. Effect of hemodialysis on impedance cardiography (electrical velocimetry) parameters in children. Pediatr Nephrol 35, 669–676 (2020). https://doi.org/10.1007/s00467-019-04409-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04409-1

Keywords

Navigation