Skip to main content
Log in

Inverse Dynamic Analysis of an Inclined FGM Beam Due to Moving Load for Estimating the Mass of Moving Load Based on a CGM

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the use of the inverse solution method for estimating the mass of moving load on an inclined functionally graded material (FGM) Timoshenko beam is discussed based on the measured displacements. Fletcher–Reeves (FR) method is used to solve the inverse problem. Also, in the process of solving the inverse problem and in order to solve the direct problem, Newmark method is applied for discretization of the time domain and finite element method (FEM) is used for discretization of the space domain. According to many other similar types of research, instead of conducting an experiment and measuring displacements of the beam as inputs of the inverse solution, those inputs are obtained from the direct problem and then random errors are added. Furthermore, an inclined functionally graded (FG) beam with different boundary conditions and power-law exponents due to different speeds of the moving mass has been studied to evaluate the performance of the proposed method. The accuracy of results is very high in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(\left( {x,y,z} \right)\) :

Cartesian coordinate system

\(t\) :

Time

\(L\) :

Beam length

\(h\) :

Beam thickness

\(b\) :

Beam width

\(m_{\text{c}}\) :

Mass of the moving load

\(v\) :

Constant velocity of the load

\(k\) :

Power-law exponent

\(\bar{u}\left( {x,z,t} \right)\) :

Axial longitudinal displacement

\(u\left( {x,t} \right)\) :

Axial longitudinal in-plane displacement

\(w\left( {x,t} \right)\) :

Transverse deflection of the beam

\(L\) :

Length of a beam element

\(x_{i}\) :

Local x coordinate of the moving mass with respect to the left end of the beam element

\(q_{i}\) :

Nodal displacements

\(\left[ {M^{\text{e}} } \right]\) :

Element mass matrix of the inclined beam itself

\(\left[ {K^{\text{e}} } \right]\) :

Element stiffness matrix of the inclined beam itself

\(\left\{ {Q^{\text{e}} } \right\}\) :

Element nodal force vector of the inclined beam itself

\(A\) :

Section area

\(I\) :

Moment of inertia

\(E\) :

Young’s modulus

\(G\) :

Shear modulus

\(k_{\text{s}}\) :

Shear correction factor

\(\left[ {M_{\text{b}} } \right]\) :

The overall mass matrix of the inclined beam itself

\(\left[ {C_{\text{b}} } \right]\) :

The overall damping matrix of the inclined beam itself

\(\left[ {K_{\text{b}} } \right]\) :

The overall stiffness matrix of the inclined beam itself

\(\left\{ Q \right\}\) :

The overall nodal force vector of the inclined beam itself

\(a\) and \(b\) :

Constant coefficients defined by Eq. (9b, c)

\(F_{x}^{{m_{\text{c}} }}\) :

The equivalent force in the x-direction induced by the moving mass defined by Eq. (10a)

\(F_{z}^{{m_{\text{c}} }}\) :

The equivalent force in the x-direction induced by the moving mass defined by Eq. (10b)

\(g\) :

Acceleration of the gravity

\(f_{k}\) :

Equivalent nodal forces of the mass element defined by Eq. (11)

\(\left[ m \right]\) :

The mass matrix of the moving mass element

\(\left[ c \right]\) :

The damping matrix of the moving mass element

\(\left[ k \right]\) :

The stiffness matrix of the moving mass element

\(\left\{ f \right\}\) :

The force vector of the moving mass element

\(\left[ {M\left( t \right)} \right]\) :

The overall mass matrix

\(\left[ {C\left( t \right)} \right]\) :

The overall damping matrix

\(\left[ {K\left( t \right)} \right]\) :

The overall stiffness matrix

\(\left\{ {F(t)} \right\}\) :

The overall force vector

\(n\) :

Total degrees of freedom of the entire vibrating beam

\(N\) :

Number of measured displacement detecting points (number of sensors)

\(x_{s}\) :

Global \(x\) coordinate of sth sensor with respect to the left end of the beam

\(W\left( {m_{\text{c}} ,x_{s} ,t} \right)\) :

Estimated (computed) transverse displacement

\(W^{*} \left( {x_{s} ,t} \right)\) :

Measured transverse displacement (it is determined by using Eq. (19) in this paper)

\(m_{\text{c}}^{ * }\) :

The exact value of moving load mass parameter that should be estimated

\(e\left( {x_{s} } \right)\) :

Random error function defined by Eq. (20)

\(\bar{A}\) :

An arbitrary constant number (percentage error)

\(r(x_{s} )\) :

A random number between 0 and 1 (noise)

\(J(W)\) :

An objective function defined by Eq. (18)

\(M\) :

An independent variable

\(M_{i}\) :

The ith estimated mass parameter of moving load (from ith iteration)

\(S_{i}\) :

The ith search direction defined by Eq. (24)

\(M_{\text{beam}}\) :

Mass of the inclined beam itself

\(\theta\) :

Beam inclination angle

\(\varepsilon_{x}\) :

Longitudinal (normal) strain

\(\gamma_{xz}\) :

Shear strain

\(\phi_{k}\) :

Shape functions defined by Eq. (6a)

\(\rho\) :

Mass density

\(\xi_{i}\) and \(\xi_{j}\) :

Damping ratios corresponding to any two natural frequencies of the structure

\(\omega_{i}\) and \(\omega_{j}\) :

Two natural frequencies of the structure

\(\nabla J\) :

The gradient of the objective function defined by Eq. (21)

\(\lambda_{i}^{ * }\) :

Optimal step length in the direction \(S_{i}\)

\(\Delta t\) :

Time interval

\({\text{e}}\) :

Element property

Dot (.):

Differentiation with respect to the time \(t\)

Prime (´):

Differentiation with respect to the coordinate \(x\)

References

  • Al-Baali M (1985) Descent property and global convergence of the Fletcher–Reeves method with inexact line search. IMA J Numer Anal 5(1):121–124

    MathSciNet  MATH  Google Scholar 

  • Altunışık AC, Okur FY, Kahya V (2017) Modal parameter identification and vibration based damage detection of a multiple cracked cantilever beam. Eng Fail Anal 79:154–170

    Google Scholar 

  • Bathe KJ (1982) Finite element procedures in engineering analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Carassale L, Marrè-Brunenghi M, Patrone S (2018) Wavelet-based identification of rotor blades in passage-through-resonance tests. Mech Syst Signal Process 98:124–138

    Google Scholar 

  • Chen Z, Chan THT (2017) A truncated generalized singular value decomposition algorithm for moving force identification with ill-posed problems. J Sound Vib 401:297–310

    Google Scholar 

  • Clough RW, Penzien J (1993) Dynamics of structures. McGraw Hill, New York

    MATH  Google Scholar 

  • Dai YH (1999) Further insight into the convergence of the Fletcher–Reeves method. Sci China 42(9):905–916

    MathSciNet  MATH  Google Scholar 

  • Dai YH, Yuan YX (1996) Convergence properties of the Fletcher–Reeves method. IMA J Numer Anal 16(2):155–164

    MathSciNet  MATH  Google Scholar 

  • Eroglu U, Tufekci E (2016) Exact solution based finite element formulation of cracked beams for crack detection. Int J Solids Struct 96:240–253

    Google Scholar 

  • Esmailzadeh E, Ghorashi M (1995) Vibration analysis of beams traversed by uniform partially distributed moving masses. J Sound Vib 184(1):9–17

    MATH  Google Scholar 

  • Esmailzadeh E, Ghorashi M (1997) Vibration analysis of a Timoshenko beam subjected to a travelling mass. J Sound Vib 199(4):615–628

    Google Scholar 

  • Fernández-Sáez J, Morassi A, Rubio L (2017) Crack identification in elastically restrained vibrating rods. Int J Non Linear Mech 94:257–267

    Google Scholar 

  • Fletcher R, Reeves CM (1964) Function minimization by conjugate gradient methods for optimization. SIAM J Optim 7:149–154

    MATH  Google Scholar 

  • Foda MA, Abduljabbar ZA (1998) Dynamic green function formulation for the response of a beam structure to a moving mass. J Sound Vib 210(3):295–306

    Google Scholar 

  • Giannopoulos GI (2017) Crack identification in graphene using eigenfrequencies. Int J Appl Mech 9(1):1750009

    Google Scholar 

  • Gillich GR, Mituletu IC, Praisach ZI, Negru I, Tufoi M (2017) Method to enhance the frequency readability for detecting incipient structural damage. Iran J Sci Technol Trans Mech Eng 41(3):233–242

    Google Scholar 

  • Golbahar Haghighi MR (2016) Estimation of heat flux in variable thickness functionally graded annular fin. Iran J Sci Technol Trans Mech Eng 40(3):203–214

    Google Scholar 

  • Golbahar Haghighi MR, Eghtesad M, Malekzadeh P, Necsulescu DS (2008) Two-dimensional inverse heat transfer analysis of functionally graded materials in estimating time dependent surface heat flux. Numer Heat Transf 54:744–762

    Google Scholar 

  • Golbahar Haghighi MR, Eghtesad M, Malekzadeh P, Necsulescu DS (2009) Three dimensional inverse transient heat transfer analysis of thick functionally graded plates. Energ Convers Manag 50:450–457

    Google Scholar 

  • Golbahar Haghighi MR, Malekzadeh P, Rahideh H, Vaghefi M (2012) Inverse transient heat conduction problems of a multilayered functionally graded cylinder. Numer Heat Trans Part A Appl 61:717–733

    Google Scholar 

  • Golbahar Haghighi MR, Malekzadeh P, Afshari M (2014) Inverse internal pressure estimation of functionally graded cylindrical shells under thermal environment. Acta Mech 225(12):3377–3393

    MathSciNet  MATH  Google Scholar 

  • Golbahar Haghighi MR, Malekzadeh P, Afshari M (2015) Inverse estimation of heat flux and pressure in functionally graded cylinders with finite length. Compos Struct 121:1–15

    Google Scholar 

  • Gupta DK, Dhingra AK (2018) Dynamic programming approach to load estimation using optimal sensor placement and model reduction. Int J Comput Methods 15(3):1850071

    MathSciNet  MATH  Google Scholar 

  • Ichikawa M, Miyakawa Y, Matsuda A (2000) Vibration analysis of the continuous beam subjected to a moving mass. J Sound Vib 230(3):493–506

    Google Scholar 

  • Lai T, Yi TH, Li HN (2016) Parametric study on sequential deconvolution for force identification. J Sound Vib 377:76–89

    Google Scholar 

  • Lee HL, Chang WJ, Chen WL, Yang YC (2012a) Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions. Energ Convers Manag 57:1–7

    Google Scholar 

  • Lee HL, Chang WJ, Sun SH, Yang YC (2012b) Estimation of temperature distributions and thermal stresses in a functionally graded hollow cylinder simultaneously subjected to inner-and-outer boundary heat fluxes. Compos Part B Eng 43:786–792

    Google Scholar 

  • Li XF (2008) A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams. J Sound Vib 318:1210–1229

    Google Scholar 

  • Liu J, Han X, Jiang C, Ning HM, Bai YC (2011) Dynamic load identification for uncertain structures based on interval analysis and regularization method. Int J Comput Methods 8(4):667–683

    MathSciNet  MATH  Google Scholar 

  • Liu J, Sun X, Han X, Jiang C, Yu D (2014) A novel computational inverse technique for load identification using the shape function method of moving least square fitting. Comput Struct 144:127–137

    Google Scholar 

  • Luong HTM, Zabel V, Lorenz W, Rohrmann RG (2017) Vibration-based model updating and identification of multiple axial forces in truss structures. Procedia Eng 188:385–392

    Google Scholar 

  • Malekzadeh P, Monajjemzadeh SM (2013) Dynamic response of functionally graded plates in thermal environment under moving load. Compos B Eng 45(1):1521–1533

    Google Scholar 

  • Malekzadeh P, Monajjemzadeh SM (2015) Nonlinear response of functionally graded plates under moving load. Thin Walled Struct 96:120–129

    Google Scholar 

  • Malekzadeh P, Monajjemzadeh SM (2016) Dynamic response of functionally graded beams in a thermal environment under a moving load. Mech Adv Mater Struct 23(3):248–258

    Google Scholar 

  • Malekzadeh P, Dehbozorgi M, Monajjemzadeh SM (2015) Vibration of functionally graded carbon nanotube-reinforced composite plates under a moving load. Sci Eng Compos Mater 22(1):37–55

    Google Scholar 

  • Mamandi A, Kargarnovin MH, Younesian D (2010) Nonlinear dynamics of an inclined beam subjected to a moving load. Nonlinear Dyn 60(3):277–293

    MATH  Google Scholar 

  • Matsuzaki R, Yamamoto K, Todoroki A (2017) Delamination detection in carbon fiber reinforced plastic cross-ply laminates using crack swarm inspection: Experimental verification. Compos Struct 173:127–135

    Google Scholar 

  • Michaltsos G, Sophianopoulos D, Kounadis AN (1996) The effect of a moving mass and other parameters on the dynamic response of a simply-supported beam. J Sound Vib 191(3):357–362

    MATH  Google Scholar 

  • Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (1999) Functionally graded materials: design, processing and applications. Kluwer, Dordrecht

    Google Scholar 

  • Mofid M, Shadnam M (2000) On the response of beams with internal hinges under moving mass. Adv Eng Softw 31(5):323–328

    Google Scholar 

  • Nami MR, Janghorban M (2015) Dynamic analysis of isotropic nanoplates subjected to moving load using state-space method based on nonlocal second order plate theory. J Mech Sci Technol 29(6):2423–2426

    Google Scholar 

  • Nandakumar P, Shankar K (2015) Structural crack damage detection using transfer matrix and state vector. Measurement 68:310–327

    Google Scholar 

  • Nikkhoo A, Farazandeh A, Ebrahimzadeh Hassanabadi M, Mariani S (2015) Simplified modeling of beam vibrations induced by a moving mass by regression analysis. Acta Mech 226(7):2147–2157

    MathSciNet  MATH  Google Scholar 

  • Nikkhoo A, Farazandeh A, Ebrahimzadeh Hassanabadi M (2016) On the computation of moving mass/beam interaction utilizing a semi-analytical method. J Braz Soc Mech Sci Eng 38(3):761–771

    Google Scholar 

  • Nikkhoo A, Zolfaghari S, Kiani K (2017) A simplified-nonlocal model for transverse vibration of nanotubes acted upon by a moving nanoparticle. J Braz Soc Mech Sci Eng 39(12):4929–4941

    Google Scholar 

  • Nord TS, Øiseth O, Lourens EM (2016) Ice force identification on the Nordströmsgrund lighthouse. Comput Struct 169:24–39

    Google Scholar 

  • Pan CD, Yu L, Liu HL, Chen ZP, Luo WF (2018) Moving force identification based on redundant concatenated dictionary and weighted l1-norm regularization. Mech Syst Signal Process 98:32–49

    Google Scholar 

  • Polak E, Ribire G (1969) Note sur la convergence de methods de directions conjugues. Rev. Fr. d’ Inform Recherche Oprationnelle 16:35–43

    Google Scholar 

  • Polyak BT (1969) The conjugate gradient method in extremal problems. USSR Comput Math Math Phys 9(4):94–112

    MATH  Google Scholar 

  • Powell MJD (1977) Restart procedure for the conjugate gradient method. Math Program 12(1):241–254

    MathSciNet  MATH  Google Scholar 

  • Powell MJD (2006) Non-convex minimization calculation and the conjugate gradient method. Lect Notes Math 1066:122–141

    Google Scholar 

  • Przemieniecki JS (1985) Theory of matrix structural analysis. McGraw Hill, New York

    MATH  Google Scholar 

  • Qiao B, Zhang X, Wang C, Zhang H, Chen X (2016) Sparse regularization for force identification using dictionaries. J Sound Vib 368:71–86

    Google Scholar 

  • Rao SS (2009) Engineering optimization theory and practice. Wiley, New Jersey

    Google Scholar 

  • Rao ARM, Lakshmi K, Krishna Kumar S (2015) Detection of delamination in laminated composites with limited measurements combining PCA and dynamic QPSO. Adv Eng Softw 86:85–106

    Google Scholar 

  • Reddy JN (2000) Analysis of functionally graded plates. Int J Numer Meth Eng 47:663–684

    MATH  Google Scholar 

  • Rezayat A, Nassiri V, De Pauw B, Ertveldt J, Vanlanduit S, Guillaume P (2016) Identification of dynamic forces using group-sparsity in frequency domain. Mech Syst Signal Process 70–71:756–768

    Google Scholar 

  • Shahsavari D, Janghorban M (2017) Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load. J Braz Soc Mech Sci Eng 39(10):3849–3861

    Google Scholar 

  • Shahsavari D, Karami B, Janghorban M, Li L (2017) Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment. Mater Res Express 4(8):085013

    Google Scholar 

  • Stanis̆ić MM, Hardin JC (1969) On the response of beams to an arbitrary number of concentrated moving masses. J Frankl Inst 287(2):115–123

    Google Scholar 

  • Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials. IOM Communications, London

    Google Scholar 

  • Teidj S, Khamlichi A, Driouach A (2016) Identification of beam cracks by solution of an inverse problem. Procedia Technol 22:86–93

    Google Scholar 

  • Torabi K, Sharifi D, Ghassabi M, Mohebbi A (2018) Semi-analytical solution for nonlinear transverse vibration analysis of an Euler–Bernoulli beam with multiple concentrated masses using variational iteration method. Iran J Sci Technol Trans Mech Eng. https://doi.org/10.1007/s40997-018-0168-7

    Article  Google Scholar 

  • Touati-Ahmed D, Storey C (1990) Globally convergent hybrid conjugate gradient methods. J Optim Theory Appl 64(2):379–397

    MathSciNet  MATH  Google Scholar 

  • Vincent H, Gentiane V, Nasser R, Philippe G (2017) Improving the upper-limb force feasible set evaluation by muscles maximal isometric force identification and cocontraction factors. J Biomech 57:131–135

    Google Scholar 

  • Wang C, Lian S (2006) Global convergence properties of the two new dependent Fletcher–Reeves conjugate gradient methods. Appl Math Comput 181(2):920–931

    MathSciNet  MATH  Google Scholar 

  • Wu JJ (2004) Dynamic responses of a three-dimensional framework due to a moving carriage hoisting a swinging object. Int J Numer Meth Eng 59(13):1679–1702

    MATH  Google Scholar 

  • Wu JJ (2005) Dynamic analysis of an inclined beam due to moving loads. J Sound Vib 288:107–131

    MATH  Google Scholar 

  • Xu X, Xu W, Genin J (1997) A non-linear moving mass problem. J Sound Vib 204(3):495–504

    Google Scholar 

  • Yang TY (1986) Finite element structural analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Yang C, Oyadiji SO (2017) Identification of beam cracks by solution of an inverse problem. Comput Struct 179:109–126

    Google Scholar 

  • Yang YC, Chen WL, Chou HM, Salazar JLL (2013) Inverse hyperbolic thermoelastic analysis of a functionally graded hollow circular cylinder in estimating surface heat flux and thermal stresses. Int J Heat Mass Transf 60:125–133

    Google Scholar 

  • Zhang L, Yang G, Hu D (2018) Identification of voids in structures based on level set method and FEM. Int J Comput Methods 15(3):1850015

    MathSciNet  MATH  Google Scholar 

  • Zhao J, Gao R, Yang Y, Wang B (2017) An optimized rail crack detection algorithm based on population status. Int J Comput Mater Sci Eng 6(2):1750022

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeedreza Mohebpour.

Appendices

Appendix 1

$$\begin{aligned} \left[ {M^{\text{e}} } \right] & = \left[ {\begin{array}{*{20}c} {M_{ij}^{11} } & {M_{iJ}^{12} } & {M_{ij}^{13} } \\ {M_{Ij}^{21} } & {M_{IJ}^{22} } & {M_{Ij}^{23} } \\ {M_{ij}^{31} } & {M_{iJ}^{32} } & {M_{ij}^{33} } \\ \end{array} } \right],\;\left[ {K^{\text{e}} } \right] = \left[ {\begin{array}{*{20}c} {K_{ij}^{11} } & {K_{iJ}^{12} } & {K_{ij}^{13} } \\ {K_{Ij}^{21} } & {K_{IJ}^{22} } & {K_{Ij}^{23} } \\ {K_{ij}^{31} } & {K_{iJ}^{32} } & {K_{ij}^{33} } \\ \end{array} } \right] \\ M_{ij}^{11} & = \int_{0}^{l} {\rho_{0} \phi_{i}^{(1)} \phi_{j}^{(1)} } dx,\;M_{iJ}^{12} = 0,\;M_{ij}^{13} = \int_{0}^{l} {\rho_{1} \phi_{i}^{(1)} \phi_{j}^{(3)} } {\text{d}}x,\;M_{Ij}^{21} = 0,\;M_{IJ}^{22} = \int_{0}^{l} {\rho_{0} \phi_{I}^{(2)} \phi_{J}^{(2)} } {\text{d}}x,\;M_{Ij}^{23} = 0, \\ M_{ij}^{31} & = (M_{ij}^{13} )^{\text{T}} ,\;M_{iJ}^{32} = 0,\;M_{ij}^{33} = \int_{0}^{l} {\rho_{2} \phi_{i}^{(3)} \phi_{j}^{(3)} } {\text{d}}x, \\ K_{ij}^{11} & = \int_{0}^{l} {A_{11} \frac{{\partial \phi_{i}^{(1)} }}{\partial x}\frac{{\partial \phi_{j}^{(1)} }}{\partial x}} {\text{d}}x,\;K_{iJ}^{12} = 0,\;K_{ij}^{13} = \int_{0}^{l} {B_{11} \frac{{\partial \phi_{i}^{(1)} }}{\partial x}\frac{{\partial \phi_{j}^{(3)} }}{\partial x}} {\text{d}}x,\;K_{Ij}^{21} = 0,\;K_{IJ}^{22} = \int_{0}^{l} {k_{s} A_{55} \frac{{\partial \phi_{I}^{(2)} }}{\partial x}\frac{{\partial \phi_{J}^{(2)} }}{\partial x}} {\text{d}}x, \\ K_{Ij}^{23} & = \int_{0}^{l} {k_{s} A_{55} \frac{{\partial \phi_{I}^{(2)} }}{\partial x}\phi_{j}^{(3)} } {\text{d}}x,\;K_{ij}^{31} = (K_{ij}^{13} )^{\text{T}} ,\;K_{iJ}^{32} = (K_{Ij}^{23} )^{T} ,\;K_{ij}^{33} = \int_{0}^{l} {D_{11} \frac{{\partial \phi_{i}^{(3)} }}{\partial x}\frac{{\partial \phi_{j}^{(3)} }}{\partial x} + k_{s} A_{55} \phi_{i}^{(3)} \phi_{j}^{(3)} } {\text{d}}x, \\ \left[ {\rho_{0} ,\rho_{1} ,\rho_{2} ,A_{11} ,B_{11} ,D_{11} ,A_{55} } \right] & = \int\limits_{ - h/2}^{h/2} {\int\limits_{ - b/2}^{b/2} {\left[ {\rho (z),z\rho (z),z^{2} \rho (z),E(z),zE(z),z^{2} E(z),G(z)} \right] \, } } {\text{d}}y{\text{d}}z. \\ \end{aligned}$$
(A1–20)

where \(i,j = 1,2\) and \(I,J = 1,2,3\).

And \(Q_{i}^{\text{e}} \, \left( {i = 1, \ldots ,7} \right)\) are the nodal forces of an element of the inclined beam that in this study according to boundary conditions for two end nodes are zero or unknown, and for other nodes are zero.

Appendix 2

$$\begin{aligned} \left\{ f \right\} & = \left[ {\begin{array}{*{20}c} {f_{1} } & {f_{2} } & {f_{3} } & {f_{4} } & {f_{5} } & {f_{6} } & {f_{7} } \\ \end{array} } \right]^{T} ,\;\left\{ q \right\} = \left[ {\begin{array}{*{20}c} {q_{1} } & {q_{2} } & {q_{3} } & {q_{4} } & {q_{5} } & {q_{6} } & {q_{7} } \\ \end{array} } \right]^{T} , \\ \left\{ {\dot{q}} \right\} & = \left[ {\begin{array}{*{20}c} {\dot{q}_{1} } & {\dot{q}_{2} } & {\dot{q}_{3} } & {\dot{q}_{4} } & {\dot{q}_{5} } & {\dot{q}_{6} } & {\dot{q}_{7} } \\ \end{array} } \right]^{T} ,\;\left\{ {\ddot{q}} \right\} = \left[ {\begin{array}{*{20}c} {\ddot{q}_{1} } & {\ddot{q}_{2} } & {\ddot{q}_{3} } & {\ddot{q}_{4} } & {\ddot{q}_{5} } & {\ddot{q}_{6} } & {\ddot{q}_{7} } \\ \end{array} } \right]^{T} , \\ \left[ m \right] & = m_{\text{c}} \left[ {\begin{array}{*{20}c} {m_{ij}^{11} } & {m_{iJ}^{12} } & {m_{ij}^{13} } \\ {m_{Ij}^{21} } & {m_{IJ}^{22} } & {m_{Ij}^{23} } \\ {m_{ij}^{31} } & {m_{iJ}^{32} } & {m_{ij}^{33} } \\ \end{array} } \right],\left[ c \right] = 2m_{c} v\left[ {\begin{array}{*{20}c} {c_{ij}^{11} } & {c_{iJ}^{12} } & {c_{ij}^{13} } \\ {c_{Ij}^{21} } & {c_{IJ}^{22} } & {c_{Ij}^{23} } \\ {c_{ij}^{31} } & {c_{iJ}^{32} } & {c_{ij}^{33} } \\ \end{array} } \right], \\ \left[ k \right] & = m_{\text{c}} v^{2} \left[ {\begin{array}{*{20}c} {k_{ij}^{11} } & {k_{iJ}^{12} } & {k_{ij}^{13} } \\ {k_{Ij}^{21} } & {k_{IJ}^{22} } & {k_{Ij}^{23} } \\ {k_{ij}^{31} } & {k_{iJ}^{32} } & {k_{ij}^{33} } \\ \end{array} } \right],\left\{ F \right\} = m_{\text{c}} g\left\{ {\begin{array}{*{20}c} {F_{i}^{1} } \\ {F_{I}^{2} } \\ {F_{i}^{3} } \\ \end{array} } \right\}. \\ \end{aligned}$$
(B1–8)

and

$$\begin{aligned} m_{ij}^{11} & = \phi_{i}^{(1)} \phi_{j}^{(1)} ,\;m_{iJ}^{12} = - \mu \phi_{i}^{(1)} \phi_{J}^{(2)} ,\;m_{ij}^{13} = 0,\;m_{Ij}^{21} = 0,\;m_{IJ}^{22} = \phi_{I}^{(2)} \phi_{J}^{(2)} ,\;m_{Ij}^{23} = 0,\;m_{ij}^{31} = 0,\;m_{iJ}^{32} = 0,\;m_{ij}^{33} = 0, \\ c_{ij}^{11} & = 0,\;c_{iJ}^{12} = - \mu \phi_{i}^{(1)} \phi_{J}^{{{\prime (2)}}} ,\;c_{ij}^{13} = 0,\;c_{Ij}^{21} = 0,\;c_{IJ}^{22} = \phi_{I}^{(2)} \phi_{J}^{{{\prime }(2)}} ,\;c_{Ij}^{23} = 0,\;c_{ij}^{31} = 0,\;c_{iJ}^{32} = 0,\;c_{ij}^{33} = 0, \\ k_{ij}^{11} & = 0,\;k_{iJ}^{12} = - \mu \phi_{i}^{(1)} \phi_{J}^{{{\prime }(2)}} ,\;k_{ij}^{13} = 0,\;k_{Ij}^{21} = 0,\;k_{IJ}^{22} = \phi_{I}^{(2)} \phi_{J}^{(2)} ,\;k_{Ij}^{23} = 0,\;k_{ij}^{31} = 0,\;k_{iJ}^{32} = 0,\;k_{ij}^{33} = 0, \\ F_{i}^{1} & = - \phi_{i}^{(1)} \left( {\mu \cos \theta + \sin \theta } \right),\;F_{I}^{2} = \phi_{I}^{(2)} \cos \theta ,\;F_{i}^{3} = 0 , { ( }i,j = 1,2; \, I,\;J = 1,2,3{ )} .\\ \end{aligned}$$
(B9–38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokouhifard, V., Mohebpour, S., Malekzadeh, P. et al. Inverse Dynamic Analysis of an Inclined FGM Beam Due to Moving Load for Estimating the Mass of Moving Load Based on a CGM. Iran J Sci Technol Trans Mech Eng 44, 543–556 (2020). https://doi.org/10.1007/s40997-019-00291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-019-00291-2

Keywords

Navigation