Skip to main content
Log in

Liquid Immiscibility and Problems of Ore Genesis: Experimental Data

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper reports the results of an experimental study of phase relations and distribution of elements in silicate melt–salt melt systems (carbonate, phosphate, fluoride, chloride), silicate melt I – silicate melt II, and fluid–magmatic systems in the presence of alkali metal fluorides. Extraction of a number of ore elements (Y, REE, Sr, Ba, Ti, Nb, Zr, Ta, W, Mo, Pb) by salt components was studied in liquid immiscibility processes within a wide temperature range of 800–1250°С and pressure of 1–5.5 kbar. It is shown that partition coefficients are sufficient for concentration of ore elements in amounts necessary for the genesis of ore deposits. In a fluid-saturated trachyrhyolite melt, the separation into two silicate liquids has been determined. The partition coefficients of a number of elements (Sr, La, Nb, Fe, Cr, Mo, K, Rb, Cs) between phases L1 and L2 have been obtained. The interaction processes of a heterophase fluid in the granite (quartz)–ore mineral–heterophase fluid (Li, Na, K-fluoride) system were studied at 650–850°C and P = 1 kbar. The formation of the phase of a highly alkaline fluid-saturated silicate melt concentrating Ta and Nb is shown as a result of the interaction of the fluid with rock and ore minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Alferyeva, Ya.O., Gramenitsky, E.N., and Shchekina, T.I., Experimental study of phase relations in a lithium-bearing fluorine-rich haplogranite and nepheline syenite system, Geochem. Int., 2011, vol. 49, no. 7, pp. 676–690.

    Article  Google Scholar 

  2. Andreeva, I.A., Silicate, Silicate–Salt, and Salt Magmas of the Mushugai-Khuduk Alkaline Carbonatite-Bearing Complex, South Mongolia: Melt Inclusion Data, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Moscow: IGEM RAN, 2000.

  3. Anfilogov, V.N., Dymkin, A.M., and Bobylev, I.B., Immiscibility in magmatic melts, Issledovaniya struktury magmaticheskikh rasplavov (Structural Studies of Magmatic Melts), Sverdlovsk: Izd-vo UNTs AN SSSR, 1981. S. 3-15.

  4. Beus, A.A., Severov, E.A., Sitnin, F.F., and Subbotin, K.D., Al’bitizirovannye i greizenizirovannye granity (apogranity) (Albitized Greisenized Granites (Apogranites)), Moscow: Iz-vo AN SSSR, 1962.

  5. Borodulin G.P., Chevychelov V.Yu., Zaraisky, G.P., Experimental study of partitioning of tantalum, niobium, manganese, and fluorine between aqueous fluoride fluid and granitic and alkaline melts, Dokl. Earth Sci., 2009, vol. 427, no. 5, pp. 868–873.

    Article  Google Scholar 

  6. Chevychelov, V.Yu., Borodulin, G.P., and Zaraiskiy, G.P., Solubility of columbite, (Mn,Fe)(Nb,Ta)2O6, in granitoid and alkaline melts at 650–850°C and 30–400 MPa: an experimental investigation, Geochem. Int., 2010, vol. 48, no. 5, pp. 456–464.

    Article  Google Scholar 

  7. Chevychelov, V.Yu. and Suk, N.I., Influence of the composition of magmatic melt on the solubility of metal chlorides at pressures of 0.1–3.0 kbar, Petrology, 2003, vol. 11, no. 1. pp. 62–74.

    Google Scholar 

  8. Chevychelov, V.Yu., Zaraisky, G.P., Borisovskii, S.E., and Borkov, D.A., Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: fractionation of Ta and Nb and conditions of ore formation in rare-metal granites, Petrology, 2005, vol. 13, no. 4, pp. 305–351.

    Google Scholar 

  9. Delitsyn, L.M. and Melent’ev, B.N., Coexistence of two immiscible liquid phases in a niobium–rare earth–silicate–salt system, Dokl. Chem., 2015, vol. 462, no. 2, pp. 165–168.

    Article  Google Scholar 

  10. Delitsyn L.M. and Melent’ev, B.N., Coexistence of liquid phases at high temperatures. Na2O–SiO2–KCl system, Dokl. Akad. Nauk SSSR, 1972, vol. 202, no. 5, pp. 1114–1116.

    Google Scholar 

  11. Freestone, J.C. and Hamilton, D.L., The role of liquid immiscibility in the genesis of carbonatites—an experimental study, Contrib. Mineral. Petrol., 1980, vol. 73, no. 3, pp. 105–117.

    Article  Google Scholar 

  12. Gramenitsky, E.N., Insight into evolution of hydrothermal–magmatic systems, Vestn. Mosk. Univ., Ser. Geol., 1986, no. 2, pp. 3–17.

  13. Gramenitsky, E.N., Shchekina, T.I., Berman, I.B., and Popenko, D.P., Accumulation of lithium by aluminofluoride melts in the F-bearing granitic system, Dokl. Ross. Akad. Nauk, 1993, vol. 331, no. 1, pp. 87–90.

    Google Scholar 

  14. Gramenitsky, E.N., Shchekina, T.I., and Devyatova, V.N., Fazovye otnosheniya vo ftorsoderzhashchikh granitnoi i nefelin-sienitovoi sistemakh i raspredelenie elementov mezhdu fazami (eksperimental’noe issledovanie) (Phase Relations in Fluorine-Bearing Granitic and Nepheline–Syenite Systems and Partitioning of Elements between Phases (Experimental Study), Moscow: GEOS, 2005.

  15. Greig, I.W., Immiscibility in silicate melts, Am. J. Sci., 1927, vol. 13, pp. 133–154.

    Google Scholar 

  16. Grigor’ev, D.P. and Iskyul’, E.V., Differentiation of some silicate melts as result of the formation of two immiscible liquids, Izv. Akad. Nauk SSSR. Ser. Geol., 1937, no. 1, pp. 77–107.

  17. Hamilton, D.L., Bedson, P., and Esson, J., The behaviour of trace elements in the evolution of carbonatites, Carbonatites. Genesis and Evolution, Bell, E., Ed., London: Unwyn Hyman, 1989, pp. 405–427.

    Google Scholar 

  18. Khitarov, N.I., Arutyunyan, L.A., and Lebedev, E.B., Experimental study of molybdenum removal from granitic melt under water pressure up to 3000 atm, Geokhimiya, 1967, no. 8, pp. 891–900.

  19. Kjarsgaard, B.A. and Hamilton, D.L., Liquid immiscibility and the origin of alkali-poor carbonatites, Mineral. Mag., 1988, vol. 52, pp. 43–55.

    Article  Google Scholar 

  20. Kogarko, L.N., Krigman, L.D., Petrova, E.N., and Solovova, I.P., Phase equilibria in the fluorapatite–nepheline–diopside system in relation with genesis of the Khibina apatite deposits, Geokhimiya, 1977, no. 1, pp. 42–55.

  21. Kotelnikov, A.R., Korzhinskaya, V.S., Kotelnikova, Z.A., et al., Solubility of tantalite and pyrochlore in fluoride solutions at T = 650–850°C and P = 1 kbar in the presence of silicate matter, Tr. Vserossiiskogo ezhegodnogo seminara po eksperimental’noi mineralogii, petrologii i geokhimii. Moskva, 2018 (Proc. All-Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry, Moscow, 2018), Moscow: GEOKhI RAN, 2018a, pp. 160–163.

  22. Kotelnikov, A.R., Korzhinskaya, V.S., Kotelnikova, Z.A., et al., Effect of silicate matter on pyrochlore solubility in fluoride solutions at T = 550–850°C, P = 50–100 MPa (experimental studies), Dokl. Earth Sci., 2018b, vol. 482, no. 1, pp. 1199–1202.

    Article  Google Scholar 

  23. Kotelnikov, A.R., Suk, N.I., Kotelnikova, Z.A., et al., Liquid immiscibility in fluid–magmatic systems: an experimental study, Petrology, 2019, vol. 27, no.2, pp. 186–201.

    Article  Google Scholar 

  24. Kotelnikov, A.R., Suk N.I., Korzhinskaya, V.S., et al., Study of partitioning of trace and rare-earth ore componentsin the aluminosilicate melt–fluoride salt melt system at T = 800–1200°C and P = 1–2 kbar (in the water presence), Tr. Vserossiiskogo ezhegodnogo seminara po eksperimental’noi mineralogii, petrologii i geokhimii (VESEMPG-2017), Moskva, 2017 (Proc. All-Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry (VESEMPG-2017)), Moscow: GEOKhI RAN, 2017a, pp. 60–63.

  25. Kotelnikov, A.R., Suk, N.I., Kotelnikova, Z.A., et al., Study of liquid immiscibility in fluid-magmatic systems, Tr. Vserossiiskogo ezhegodnogo seminara po eksperimental’noi mineralogii, petrologii i geokhimii (VESEMPG-2017), Moskva, 2017 (Proc. All-Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry (VESEMPG-2017)), Moscow GEOKhI RAN, 2017b, pp. 64–67.

  26. Kotelnikova, Z.A. and Kotelnikov, A.R., Modeling the fluid regime of retrograde metamorphism on the basis of experimental data on phase equilibria in the system H2O-CO2-NaCl, Petrology, 1997, vol. 5, no. 1, pp. 67–73.

    Google Scholar 

  27. Kotelnikov, A.R., Suk, N.I., Korzhinskaya, V.S., et al., Investigation of rear and rare-earth ore components distribution in the systems aluminosilicate melt—fluoride salt melt at T = 800–1200°C and P = 2 kbar (in water presence), Exp. Geosci., 2017, vol. 23, no. 1, pp. 138–141.

    Google Scholar 

  28. Koster van Groos, A.F., The distribution of strontium between coexisting silicate and carbonate liquids at elevated pressures and temperatures, Geochim. Cosmochim. Acta, 1975, vol. 39, pp. 27–34.

    Article  Google Scholar 

  29. Koster van Groos, A.F. and Wyllie, P.J., Liquid immiscibility in the join NaAlSi3O8–CaAlSi2O8–Na2CO3–H2O, Am. J. Sci., 1973, vol. 273, pp. 465–487.

    Article  Google Scholar 

  30. Krigman, L.D. and Krot, T.V., Stable phosphate–aluminosilicate immiscibility in magmatic melts, Geokhimiya, 1991, no. 11, pp. 1548–1560.

  31. Marakushev, A.A., Petrogenezis i rudoobrazovanie (geokhimicheskie aspekty) (Petrogenesis and Ore Formation (Geochemical Aspects)), Moscow: Nauka, 1979.

  32. Marakushev, A.A., Gramenitsky, E.N., Korotaev, M.Yu., Petrological model of endogenous ore formation, Geol. Rudn. Mestorozhd., 1983, no. 1, pp. 3–20.

  33. Marakushev, A.A., Paneyakh, N.A., and Zotov, I.A., New concepts on the origin of noble metal deposits of quartz–ore formation, Problemy geologii rudnykh mestorozhdenii, mineralogii, petrologii i geokhimii. Materialy nauch. konfer., posvyashchen. 100-letiyu so dnya rozhd. akad. F.V. Chukhrova (Problems of Geology of Ore Deposits, Mineralogy, Petrography, and Geochemistry. Proceedings of Conference on the 100th Anniversary of Academician F.V. Chukhrov), Moscow: IGEM RAN, 2008, pp. 136–139.

  34. Marakushev, A.A., Paneyakh, N.A., and Zotov, I.A., Parageneses of ore metals in the deposits of alkaline complexes, Novye gorizonty v izuchenii protsessov magmo- i rudoobrazovaniya. Materialy konfer., posvyashch. 80-letiyu IGEMa (New Horizons in Studying Magma and Ore Formation. Proceedings of Conference Dedicated to the 80th Anniversary of IGEM), Moscow: IGEM RAN, 2010, pp. 120–121.

  35. Marakushev, A.A. and Shapovalov, Yu.B., Experimental study of ore concentrations in fluoride granitic systems, Petrologiya, 1994, vol. 2, no. 1, pp. 4–23.

    Google Scholar 

  36. Marakushev, A.A., Shapovalov, Yu.B. Behavior of molybdenum, lead, and zinc during fluoride salt extraction, Dokl. Earth Sci., 1996, vol. 351, no. 5, pp. 1464–1466.

    Google Scholar 

  37. Massion, P.J. and Koster van Groos, A.F., Liquid immiscibility in silicates, Nature Phys. Sci., 1973, vol. 245, no. 1, pp. 60–63.

    Article  Google Scholar 

  38. Melent’ev, B.N., Delitsyn, L.M., and Melent’ev, G.B., Coexistence of two liquid phases at high temperatures. Lithium fluoride–albite glass system, Dokl. Akad. Nauk SSSR, 1967, vol. 175, no. 1, pp. 199–201.

    Google Scholar 

  39. Panina, L.I. and Motorina, I.V., Immiscibility in deep-seated alkaline magmas: evidence from melt inclusion study, Materialy Vserossiiskogo soveshchaniya “Geokhimiya, petrologiya, mineralogiya i genezis shchelochnykh porod”, 2006 (Proc. All-Russian Conference “Geochemistry, Petrology, Mineralogy, and Genesis of Alkaline Rocks), Miass, 2006, pp. 181–186.

  40. Philpotts, A.R., Immiscibility between feldspathic and gabbroic magmas, Nature. Phys. Sci., 1971, vol. 229, pp. 107–109.

    Article  Google Scholar 

  41. Pugin, V.A. and Khitarov, N.I., Variolites as example of liquid immiscibility, Geokhimiya, 1980, no. 4, pp. 83–91.

  42. Reed, S.J.B., Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, Cambridge: Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511610561

    Book  Google Scholar 

  43. Roedder, E., Silicate liquid immiscibility in magmas and in the system K2O–FeO–Al2O3-SiO2: an example of serendipity, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 1597–1617.

    Article  Google Scholar 

  44. Ryabchikov, I.D., Experimental study of partitioning of alkaline elements between immiscible silicate and chloride melts, Dokl. Akad. Nauk SSSR, 1968, vol 181, no. 1, pp. 207–209.

    Google Scholar 

  45. Ryabchikov, I.D., Termodinamika flyuidnoi fazy granitoidnykh magm (Thermodynamics of Fluid Phase of Granitoid Magmas), Moscow: Nauka, 1975.

  46. Semenov, E.I., Mineraly i rudy Laplandskoi shchelochnoi formatsii (Kol’skii p-ov, Kareliya, Finlyandiya) (Minerals and Ores of the Lapland Alkaline Formation (Kola Peninsula, Karelia Finland)), Moscow: Mineral. Muz. RAN, GEOS, 2009..

  47. Semenov, E.I., Orudenenie i mineralizatsiya redkikh zemel', toriya i urana (lantanoidov i aktinoidov) (Rare-Earth Elements, Thorium and Uranium (Lanthanides and Actinides) Ore and Mineralization), Moscow: GEOS, 2001.

  48. Skripnichenko, V.A., Phosphorus as factor of liquid immiscibility of silicate melts, Dokl. Aakad. Nauk SSSR, 1979, vol. 245, no. 4, pp. 930–933.

    Google Scholar 

  49. Suk, N.I., Experimental study of alkaline magmatic aluminosilicate systems: implication for the genesis of REE–Nb loparite deposits, Dokl. Earth Sci., 2007, vol. 414, no. 4, pp. 615–618.

    Article  Google Scholar 

  50. Suk, N.I., Behavior of ore elements (W, Sn, Ti, and Zr) in layered immiscible silicate–salt systems, Petrology, 1997, vol. 5, no. 1, pp. 20–27.

    Google Scholar 

  51. Suk, N.I. and Kotelnikov, A.R. Experimental study of loparite formation in complex fluid–magmatic systems, Dokl. Earth Sci., 2008, vol. 419A, no. 3, pp. 463–466.

    Article  Google Scholar 

  52. Suk, N.I., Experimental study of liquid immiscibility in the fluid–magmatic silicate systems containing Ti, Nb, Sr, REE, and Zr, Petrology, 2012, vol. 20, no. 2, pp. 138–146.

    Article  Google Scholar 

  53. Suk, N.I., Kotelnikov, A.R., and Viryus, A.A., Crystallization of loparite in alkaline fluid-magmatic systems (from experimental and mineralogical data), Russ. Geol. Geophys., 2013, vol. 54, no. 4, pp. 436–453.

    Article  Google Scholar 

  54. Suk, N.I., Zhidkostnaya nesmesimost' v shchelochnykh magmaticheskikh sistemakh (Liquid Immiscibility in Alkaline Magmatic Systems), Moscow: KDU “Universitetskaya kniga”, 2017.

  55. Suk, N.I., Kotelnikov, A.R., Peretyazhko, I.S., and Savina, E.A., Experimental study of melting of trachyrhyolites from Central Mongolia, Tr. Vserossiiskogo ezhegodnogo se-minara po eksperimental’noi mineralogii, petrologii i geokhimii (VESEMPG-2017) (Proc. All-Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry (VESEMPG-2017)), Moscow: GEOKhI RAN, 2017, pp. 80–83.

  56. Syritso, L.F., Tabuns, E.V., Volkova, E.V., et al., Model for the genesis of Li–F granites in the Orlovka Massif, Eastern Transbaikalia, Petrology, 2001, vol. 9, no. 3, pp. 268–290.

    Google Scholar 

  57. Veksler, I.V., Petibon, C., Jenner, G.A., et al., Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave, J. Petrol., 1998, vol. 39, nos. 11–12, pp. 2095–2104.

    Article  Google Scholar 

  58. Vlasov, K.A., Kuz’menko, M.V., and Es’kova, E.M., Lovozerskii shchelochnoi massiv (Lovozero Alkaline Massif), Moscow: Izd. AN SSSR, 1959.

  59. Voitkevich, G.V., Miroshnikov, A.E., Povarennykh, A.S., et al., Kratkii spravochnik po geokhimii (Brief Textbook on Geochemistry), Moscow: Nedra, 1970.

  60. Webster, J.D., Water solubility and chlorine partitioning in Cl-rich granitic systems: effects of melt composition at 2 kbar and 800°C, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 679–687.

    Article  Google Scholar 

  61. Webster, J.D., Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport, Geochim. Cosmochim. Acta, 1997, vol. 6, no. 5, pp. 1017–1029.

    Article  Google Scholar 

  62. Yanev, Y., Petrology of Golobradovo perlite deposit, Eastern Rhodopes, Geochem. Mineral. Petrol. Sofia, 2003, vol. 40, pp. 1–20.

    Google Scholar 

  63. Zaraisky, G.P., Conditions of formation of rare-metal deposits related to granite magmatism, Smirnovskii sbornik-2004 (Smirnov’s Collection of Papers-2004), Moscow: Fond im. akad. V.I. Smirnova, 2004, pp. 105–192.

    Google Scholar 

  64. Zharikov, V.A., Osnovy fizicheskoi geokhimii (Principles of Physical Geochemistry), Moscow: MGU, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. B. Shapovalov or A. R. Kotelnikov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapovalov, Y.B., Kotelnikov, A.R., Suk, N.I. et al. Liquid Immiscibility and Problems of Ore Genesis: Experimental Data. Petrology 27, 534–551 (2019). https://doi.org/10.1134/S0869591119050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591119050060

Keywords:

Navigation