Skip to main content
Log in

Some Aspects of Forced Convection Nanofluid Flow over a Moving Plate in a Porous Medium in the Presence of Heat Source/Sink

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

In the present paper heat transfer characteristics for boundary layer forced convective nanofluid flow past a moving plate parallel to a moving stream embedded in a porous medium in the presence of heat source/sink are analyzed. A single-phase fluid model for nanofluid is used. The governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations by means of similarity transformations and then the reduced ordinary differential equations are solved numerically by a shooting technique. The effects of different parameters on velocity, velocity gradient, temperature and temperature gradient for nanofluid with Cu and Ag as nanoparticles are presented and analyzed graphically. For the validation of the numerical scheme, the numerical results obtained in this study are compared with the published data. From the results it is cleared that dual solutions exist when the plate and the free stream move in the opposite directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blasius, H., Grenzschichten in Flussigkeiten mit kleiner Reibung, Z. Ang. Math. Phys., 1908, vol. 56, pp. 1–37.

    MATH  Google Scholar 

  2. Pohlhausen, E., Der Warmeaustausch zwischen festen Korpern und Flussigkeiten mit Kleiner Reibung und Kleiner Warmeleitung, Z. Ang. Math. Mech., 1921, vol. 1, pp. 121–151.

    Article  MATH  Google Scholar 

  3. Sakiadis, B.C., Boundary-Layer Behavior on Continuous Solid Surfaces Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow, AIChE J., 1961, vol. 7, pp. 26–28.

    Article  Google Scholar 

  4. Pop, I., Gorla, R.S.R., and Rashidi, M., The Effect of Variable Viscosity on Flow and Heat transfer to a Continuous Moving Flat Plate, Int. J. Eng. Sci., 1992, vol. 30, pp. 1–6.

    Article  Google Scholar 

  5. Chen, C.H., Forced Convection over a Continuous Sheet with Suction or Injection Moving in a Flowing Fluid, Acta Mech., vol. 138, 1999, nos. 1/2, pp. 1–11.

    Article  MATH  Google Scholar 

  6. Wang, L., A New Algorithm for Solving Classical Blasius Equation, Appl. Math. Comp., 2004, vol. 157, pp. 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  7. Sadeghy, K. and Sharifi, M., Local Similarity Solution for the Flow of a “Second-Grade” Viscoelastic Fluid above a Moving Plate, Int. J. Non-Lin. Mech., 2004, vol. 39, no. 8, pp. 1265–1273.

    Article  MATH  Google Scholar 

  8. Cortell, R. Numerical Solutions of the Classical Blasius Flat-Plate Problem, Appl. Math. Comput., 2005, vol. 170, pp. 706–710.

    MathSciNet  MATH  Google Scholar 

  9. Weidman, P.D., Kubitschek, D.G., and Davis, A.M.J., The Effect of Transpiration on Self-Similar Boundary Layer Flowover Moving Surfaces, Int. J. Eng. Sci., 2006, vol. 44, nos. 11–12, pp. 730–737.

    Article  MATH  Google Scholar 

  10. Ishak, A., Nazar, R., and Pop, I., Flow and Heat Transfer Characteristics on a Moving Flat Plate in a Parallel Stream with Constant Surface Heat Flux, Heat Mass Transfer, 2009, vol. 45, pp. 563–567.

    Article  ADS  Google Scholar 

  11. Seethamahalakshmi, G., Reddy, V.R., and Prasad, B.D.C.N., Unsteady MHD Free Convection Flow and Mass Transfer near a Moving Vertical Plate in the Presence of Thermal Radiation, Adv. Appl. Sci. Res., 2011, vol. 2, pp. 261–269.

    Google Scholar 

  12. Mahmoud, M.A.A., Slip Velocity Effect on a Non-Newtonian Power-Law Fluid over a Moving Permeable Surface with Heat Generation, Math. Comput. Model., 2011, vol. 54, pp. 1228–1237.

    Article  MathSciNet  MATH  Google Scholar 

  13. Mukhopadhyay, S., Bhattacharyya, K., and Layek, G.C., Steady Boundary Layer Flow and Heat Transfer over a Porous Moving Plate in Presence of Thermal Radiation, Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 2751–2757.

    Article  MATH  Google Scholar 

  14. Mukhopadhyay, S., Dual Solutions in Boundary Layer Flow of a Moving Fluid over a Moving Permeable Surface in Presence of Prescribed Surface Temperature and Thermal Radiation, Chin. Phys. B, 2014, vol. 23, p. 014702.

    Article  Google Scholar 

  15. Kannan, T. and Moorthy, M.B.K., Effects of Variable Viscosity on Power-Law Fluids over a Permeable Moving Surface with Slip Velocity in The Presence of Heat Generation and Suction, J. Appl. Fluid Mech., 2016, vol. 9, pp. 2791–2801.

    Article  Google Scholar 

  16. Choi, S.U.S. and Eastman, J.A., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Mater. Sci., 1995, vol. 231, pp. 99–105.

    Google Scholar 

  17. Vajravelu, K., Prasad, K.V., Lee, J., Lee, C., Pop, I., and Van Gorder, R.A., Convective Heat Transfer in the Flow of Viscous Ag—Water and Cu—Water Nanofluids over a Stretching Surface, Int. J. Therm. Sci., 2011, vol. 50, no. 5, pp. 843–851.

    Article  Google Scholar 

  18. Makinde, O.D. and Aziz, A., Boundary Layer Flow of a Nanofluid past a Stretching Sheet with a Convective Boundary Condition, Int. J. Therm. Sci., 2011, vol. 50, no. 7, pp. 1326–1332.

    Article  Google Scholar 

  19. Bachok, N., Ishak, A., Pop, I., The Boundary Layers of an Unsteady Stagnation-Point Flow in a Nanofluid, Int. J. Heat Mass Transfer, 2012, vol. 55, nos. 23/24, pp. 6499–6505.

    Article  Google Scholar 

  20. Anwar, M., Khan, I., Sharidan, S., and Salleh, M., Conjugate Effects of Heat and Mass Transfer of Nanofluids over a Nonlinear Stretching Sheet, Int. J. Phys. Sci., 2012, vol. 7, no. 26, pp. 4081–4092.

    Article  Google Scholar 

  21. Rosca, N.S. and Pop, I., Unsteady Boundary Layer Flow of a Nanofluid past a Moving Surface in an External Uniform Free Stream using Buongiorno’s Model, Comput. Fluids, 2014, vol. 95, pp. 49–55.

    Article  MathSciNet  MATH  Google Scholar 

  22. Mukhopadhyay, S. and Layek, G.C., Radiation Effect on Forced Convective Flow and Heat Transfer over a Porous Plate in a Porous Medium, Meccanica, 2009, vol. 44, pp. 587–597.

    Article  MathSciNet  MATH  Google Scholar 

  23. Mukhopadhyay, S., De, P.R., Bhattacharyya, K., and Layek, G.C., Forced Convective Flow and Heat Transfer over a Porous Plate in a Darcy—Forchhimer Medium in Presence of Radiation, Meccanica, 2012, vol. 47, pp. 153–161.

    Article  MathSciNet  MATH  Google Scholar 

  24. Aziz, A., Khan, W.A., and Pop, I., Free Convection Boundary Layer Flow past a Horizontal Flat Plate Embedded in Porous Medium Filled by Nanofluid Containing Gyrotactic Microorganisms, Int. J. Therm. Sci.,, 2012, vol. 56, pp. 48–57.

    Article  Google Scholar 

  25. Ramana Reddy, J.V., Sugunamma, V., Sandeep, N., and Sulochana, C., Influence of Chemical Reaction, Radiation and Rotation on MHD Nanofluid Flow past a Permeable Flat Plate in Porous Medium, J. Nigerian Math. Soc., 2016, vol. 35, pp. 48–65.

    Article  MathSciNet  MATH  Google Scholar 

  26. Chakraborty, T., Das, K., and Kundu, P.K., Ag—Water Nanofluid Flow over an Inclined Porous Plate Embedded in a Non-Darcy Porous Medium Due to Solar Radiation, J. Mech. Sci. Technol., 2017, vol. 31, no. 5, pp. 2443–2449.

    Article  Google Scholar 

  27. Pandey, A.K. and Kumar, M., Effect of Viscous Dissipation and Suction/Injection on MHD Nanofluid Flow over a Wedge with Porous Medium and Slip, Alexandria Engng. J., 2016, vol. 55, no. 4, pp. 115–123.

    Google Scholar 

  28. Mahdy, A., Unsteady Mixed Convection Boundary Layer Flow and Heat Transfer of Nanofluids Due to Stretching Sheet, Nucl. Eng. Des., 2012, vol. 249, pp. 248–255.

    Article  Google Scholar 

  29. Ishak, A., Nazar, R., and Pop, I., The Effects of Transpiration on the Flow and Heat Transfer over a Moving Permeable Surface in a Parallel Stream, Chem. Eng. J., 2009, vol. 148, pp. 63–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Mukhopadhyay, S. Some Aspects of Forced Convection Nanofluid Flow over a Moving Plate in a Porous Medium in the Presence of Heat Source/Sink. J. Engin. Thermophys. 28, 291–304 (2019). https://doi.org/10.1134/S1810232819020103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232819020103

Navigation