Skip to main content
Log in

Influence of Preheating Temperature on Solution Combustion Synthesis of Ni–NiO Nanocomposites: Mathematical Model and Experiment

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Solution combustion synthesis (SCS) is a widely recognized method to synthesize nanoscale materials. In this work, an attempt was made to analytically simulate (using the Semenov method) and evaluate the influence of preheating temperature on flame temperature as well as on physicochemical characteristics of SCS products. Preheating was found to affect combustion temperature only slightly. An increase in preheating temperature led to a decrease in the induction period due to enhanced heating rate and an increase in cooling time as a result of additional exothermic reactions taking place at higher temperatures. Variation in cooling time caused changes in composition and microstructure of product. For the first time, a mathematical model of SCS was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aruna, S.T. and Rajam, K.S., Mixture of fuels approach for the solution combustion synthesis of Al2O3–ZrO2 nanocomposite, Mater. Res. Bull., 2004, vol. 39, no. 2, pp. 157–167. doi 10.1016/j.materresbull. 2003.10.005

    Article  Google Scholar 

  2. Alves, A., Bergmann, C.P., and Berutti, F.A., Novel Synthesis and Characterization of Nanostructured Materials: Engineering Materials, Berlin–Heidelberg: Springer, 2013, pp. 15–16.

    Book  Google Scholar 

  3. González-Cortés, S.L. and Imbert, F.E., Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal. B, 2013, vol. 452, pp. 117–131. doi 10.1016/j.apcata.2012.11.024

    Article  Google Scholar 

  4. Mukasyan, A.S. and Dinka, P., Novel approaches to solution-combustion synthesis of nanomaterials, Int. J. Self-Propag. High-Temp Synth., 2007, vol. 16, no. 1, pp. 23–35. doi 10.3103/S1061386207010049

    Article  Google Scholar 

  5. Varma, A., Mukasyan, A.S., Deshpande, K., Pranda, P., and Erri, P., Combustion synthesis of nanoscale oxide powders: Mechanism, characterization, and properties, Mater. Res. Soc. Symp. Proc., 2003, vol. 800, p. 113. doi 10.1557/PROC-800-AA4.1

    Article  Google Scholar 

  6. Aruna, S. T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, nos. 3–4, pp. 44–50. doi 10.1016/j.cossms.2008.12.002

    Article  Google Scholar 

  7. Deshpande, K., Mukasyan, A.S., and Varma, A., Direct synthesis of iron oxide nanopowders by combustion approach: Reaction mechanism and properties, Chem. Mater., 2004, vol. 16, no. 24, pp. 4896–4904. doi 10.1021/cm040061m

    Article  Google Scholar 

  8. Cross, A., Roslyakov, S., Manukyan, K.V., Rouvimov, S., Rogachev, A.S., Kovalev, D., Wolf, E.E., and Mukasyan, A.S., In situ preparation of highly stable Nibased supported catalysts by solution combustion synthesis, J. Phys. Chem. C, 2014, vol. 118, no. 45, pp. 26191–26198. doi 10.1021/jp508546n

    Article  Google Scholar 

  9. Wen, W. and Wu, J.-M., Nanomaterials via solution combustion synthesis: A step nearer to controllability, RSC Adv., 2014, vol. 4, no. 101, pp. 58090–58100. doi 10.1039/C4RA10145F

    Article  Google Scholar 

  10. Patil, K.C., Hegde, M.S., Yanu R., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, Singapore: World Scientific, 2008, ch.3.

    Book  Google Scholar 

  11. Lackner, M., Combustion Synthesis: Novel Routes to Novel Materials, Vienna: Betham, 2010, ch.16.

    Google Scholar 

  12. Xanthopoulou, G., Thoda, O., Metaxa, E.D., Vekinis, G., and Chroneos, A., Influence of atomic structure on the nanonickel-based catalysts activity produced by solution combustion synthesis in the hydrogenation of maleic acid, J. Catal., 2017, vol. 348, pp. 9–21. doi 10.1016/j.jcat.2016.12.002

    Article  Google Scholar 

  13. Thoda, O., Xanthopoulou, G., Vekinis, G., and Chroneos, A., Parametric optimization of solution combustion synthesis catalysts and their application for the aqueous hydrogenation of maleic acid, Catal. Lett., 2018, vol. 148, no. 2, pp. 764–778. doi 10.1007/s10562-017-2279-y

    Article  Google Scholar 

  14. Jiang, Y., Yang, S., Hua, Z., and Huang, H., Sol–gel autocombustion synthesis of metals and metal alloys, Angew. Chem. Int. Ed., 2009, vol. 121, no. 45, pp. 8681–8683. doi 10.1002/ange.200903444

    Article  Google Scholar 

  15. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 4493–14586. doi doi 10.1021/acs.chemrev.6b00279

    Article  Google Scholar 

  16. Roth, P., Particle synthesis in flames, Proc. Combust. Inst., 2007, vol. 31, no. 2, pp. 1773–1788. doi 10.1016/j.proci.2006.08.118

    Article  Google Scholar 

  17. Kumar, A., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of metal nanopowders: Nickel— Reaction pathways, AIChE J., 2011, vol. 57, no. 8, pp. 2207–2214. doi 10.1002/aic.12416

    Article  Google Scholar 

  18. Khaliullin, Sh.M., Zhuravlev, V.D., and Bamburov, V.G., Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects, Int. J. Self-Propag. High-Temp Synth., 2016, vol. 25, no. 3, pp. 139–148. doi 10.3103/S1061386216030031

    Article  Google Scholar 

  19. Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, no. 2, pp. 1789–1795. doi 10.1016/j.proci.2006.07.052

    Article  Google Scholar 

  20. Heinrich, P., Course of Inorganic Chemistry, Leipzig: Akademische Verlagsgesellschaft, 1961, vol.2.

  21. Zoubovich, I.A., Neorganicheskaya khimiya (Inorganic Chemistry), Moscow: Nauka, 1989.

    Google Scholar 

  22. Semenov, N.N., Some Problems in Chemical Kinetics and Reactivity, London: Pergamon Press, 1958, vol. 1, pp.128–145.

    Article  Google Scholar 

  23. Prokof’ev, V.G. and Smolyakov, V.K., Unsteady combustion regimes of gasless systems with a low-melting inert component, Combust. Explos. Shock Waves, 2002, vol. 38, no. 2, pp. 143–147.

    Article  Google Scholar 

  24. Merzhanov, A.G. and Khaikin, B.I., Theory of combustion waves in homogeneous media, Prog. Energy Combust. Sci., 1988, vol. 14, no. 1, pp. 1–98. doi 10.1016/0360-1285(88)90006-8

    Article  Google Scholar 

  25. Ripan, R.N. and Chetyanou, I., Neorganicheskaya khimiya (Inorganic Chemistry), Moscow: Mir, 1972, vol.2.

  26. Shea, L.E., McKittrick, J., and Lopez, O.A., Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process, J. Am. Chem. Soc., 1996, vol. 79, no. 12, pp. 3257–3265. doi 10.1111/j.1151-2916.1996.tb08103.x

    Google Scholar 

  27. Sing, K.S.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1982, vol. 54, no. 11, pp. 2201–2218. doi 10.1351/pac198254112201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Xanthopoulou.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thoda, O., Xanthopoulou, G., Prokof’ev, V. et al. Influence of Preheating Temperature on Solution Combustion Synthesis of Ni–NiO Nanocomposites: Mathematical Model and Experiment. Int. J Self-Propag. High-Temp. Synth. 27, 207–215 (2018). https://doi.org/10.3103/S1061386218040088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386218040088

Keywords

Navigation