Skip to main content
Log in

HAADF-STEM Electron Tomography in Catalysis Research

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Electron tomography (ET) has rapidly developed into a powerful technique to characterize the three-dimensional (3D) structure of complex materials, with nanometer resolution, for a wide range of applications including heterogeneous catalysis. In these 3D studies, scanning transmission electron microscopy (STEM) has been the most widely used imaging mode, due to both its incoherent nature, which avoids the appearance of diffraction-related artefacts, and its sensitivity to composition, an important question for most catalytic systems. Though initially used as a qualitative tool to visualize 3D nanostructures, more recently STEM tomography is being also exploited to retrieve quantitative information in 3D. In this article, we review recent developments of STEM-based tomography for the understanding of heterogeneous catalysts at the nanometer level. The new possibilities opened by quantitative analysis will be illustrated by selected cases in which different parameters are calculated from 3D reconstructions and compared to their macroscopic measurements. The key influence of the latest developments in reconstruction and segmentation methods to assess reliability and accuracy in the quantification process is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted from Ref. [19]

Fig. 2

Adapted from Ref. [21]

Fig. 3

Adapted from Ref. [45]

Fig. 4

Adapted from Ref. [71]

Fig. 5

Adapted from Ref. [24]

Fig. 6

Adapted from Ref. [56]

Similar content being viewed by others

References

  1. Smith DJ (2008) Development of Aberration-corrected electron microscopy. Microsc Microanal 14:2–15. https://doi.org/10.1017/S1431927608080124

    Article  CAS  PubMed  Google Scholar 

  2. Urban KW (2009) Is science prepared for atomic-resolution electron microscopy? Nat Mater 8:260–262. https://doi.org/10.1038/nmat2407

    Article  CAS  PubMed  Google Scholar 

  3. Su DS, Zhang B, Schlögl R (2015) Electron microscopy of solid catalysts—transforming from a challenge to a toolbox. Chem Rev 115:2818–2882. https://doi.org/10.1021/cr500084c

    Article  CAS  PubMed  Google Scholar 

  4. Datye AK, Xu Q, Kharas KC, McCarty JM (2006) Particle size distributions in heterogeneous catalysts: what do they tell us about the sintering mechanism? Catal Today 111:59–67. https://doi.org/10.1016/J.CATTOD.2005.10.013

    Article  CAS  Google Scholar 

  5. Bernal S, Calvino J, Cauqui M et al (1999) Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal Today 50:175–206. https://doi.org/10.1016/S0920-5861(98)00503-3

    Article  CAS  Google Scholar 

  6. Nellist PD, Pennycook SJ (1999) Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78:111–124. https://doi.org/10.1016/S0304-3991(99)00017-0

    Article  CAS  Google Scholar 

  7. Shindo D, Oikawa T (2002) Energy dispersive X-ray spectroscopy. In: Heydenreich J, Rechner W (eds) Analytical electron microscopy for materials science. Springer, Tokyo, pp 81–102

    Chapter  Google Scholar 

  8. Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope. Springer, Boston

    Book  Google Scholar 

  9. Midgley PA, Dunin-Borkowski RE (2009) Electron tomography and holography in materials science. Nat Mater 8:271–280. https://doi.org/10.1038/nmat2406

    Article  CAS  PubMed  Google Scholar 

  10. Midgley PA, Weyland M (2003) 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96:413–431. https://doi.org/10.1016/S0304-3991(03)00105-0

    Article  CAS  PubMed  Google Scholar 

  11. Frank J (1992) Introduction: principles of electron tomography. In: Frank J (ed) Electron tomography. Springer, Boston, pp 1–13

    Chapter  Google Scholar 

  12. Fernández-García S, Collins SE, Tinoco M et al (2019) Influence of 111 nanofaceting on the dynamics of CO adsorption and oxidation over Au supported on CeO2 nanocubes: an operando DRIFT insight. Catal Today. https://doi.org/10.1016/J.CATTOD.2019.01.078

    Article  Google Scholar 

  13. Zhang D, Zhu Y, Liu L et al (2018) Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 359:675–679. https://doi.org/10.1126/science.aao0865

    Article  CAS  PubMed  Google Scholar 

  14. Goris B, Van den Broek W, Batenburg KJ et al (2012) Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113:120–130. https://doi.org/10.1016/J.ULTRAMIC.2011.11.004

    Article  CAS  Google Scholar 

  15. Saghi Z, Holland DJ, Leary R et al (2011) Three-dimensional morphology of iron oxide nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) approach. Nano Lett 11:4666–4673. https://doi.org/10.1021/nl202253a

    Article  CAS  PubMed  Google Scholar 

  16. Vanrompay H, Béché A, Verbeeck J, Bals S (2019) Experimental evaluation of undersampling schemes for electron tomography of nanoparticles. Part Part Syst Charact. https://doi.org/10.1002/ppsc.201900096

    Article  Google Scholar 

  17. Thomas JM, Midgley PA, Yates TJV et al (2004) The chemical application of high-resolution electron tomography: bright field or dark field? Angew Chem Int Ed 43:6745–6747. https://doi.org/10.1002/anie.200461453

    Article  CAS  Google Scholar 

  18. Weyland M, Midgley PA, Thomas JM (2001) Electron tomography of nanoparticle catalysts on porous supports: a new technique based on rutherford scattering. J Phys Chem B 105:7883–7886. https://doi.org/10.1021/JP011566S

    Article  Google Scholar 

  19. Hungría AB, Raja R, Adams RD et al (2006) Single-step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. Angew Chem Int Ed 45:4782–4785. https://doi.org/10.1002/anie.200600359

    Article  CAS  Google Scholar 

  20. González JC, Hernández JC, López-Haro M et al (2009) 3D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography. Angew Chem Int Ed 48:5313–5315. https://doi.org/10.1002/anie.200901308

    Article  CAS  Google Scholar 

  21. Hernández JC, Hungría AB, Pérez-Omil JA et al (2007) Structural surface investigations of cerium–zirconium mixed oxide nanocrystals with enhanced reducibility. J Phys Chem C 111:9001–9004. https://doi.org/10.1021/jp072466a

    Article  CAS  Google Scholar 

  22. Tessonnier J-P, Ersen O, Weinberg G et al (2009) Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes. ACS Nano 3:2081–2089. https://doi.org/10.1021/nn900647q

    Article  CAS  PubMed  Google Scholar 

  23. Friedrich H, Guo S, de Jongh PE et al (2011) A quantitative electron tomography study of ruthenium particles on the interior and exterior surfaces of carbon nanotubes. ChemSusChem 4:957–963. https://doi.org/10.1002/cssc.201000325

    Article  CAS  PubMed  Google Scholar 

  24. Stoeckel D, Kübel C, Hormann K et al (2014) Morphological analysis of disordered macroporous-mesoporous solids based on physical reconstruction by nanoscale tomography. Langmuir 30:9022–9027. https://doi.org/10.1021/la502381m

    Article  CAS  PubMed  Google Scholar 

  25. Ward EPW, Yates TJV, Fernández J-J et al (2007) Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography. J Phys Chem C 111:11501–11505. https://doi.org/10.1021/jp072441b

    Article  CAS  Google Scholar 

  26. Fernandez J-J (2013) Computational methods for materials characterization by electron tomography. Curr Opin Solid State Mater Sci 17:93–106. https://doi.org/10.1016/J.COSSMS.2013.03.002

    Article  CAS  Google Scholar 

  27. Bals S, Batenburg KJ, Verbeeck J et al (2007) Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes. Nano Lett 7:3669–3674. https://doi.org/10.1021/nl071899m

    Article  CAS  Google Scholar 

  28. Thomas JM (2017) Reflections on the value of electron microscopy in the study of heterogeneous catalysts. Proc R Soc A 473:20160714. https://doi.org/10.1098/rspa.2016.0714

    Article  PubMed  Google Scholar 

  29. Midgley PA, Ward EPW, Hungría AB, Thomas JM (2007) Nanotomography in the chemical, biological and materials sciences. Chem Soc Rev 36:1477–1494. https://doi.org/10.1039/b701569k

    Article  CAS  PubMed  Google Scholar 

  30. Ersen O, Florea I, Hirlimann C, Pham-Huu C (2015) Exploring nanomaterials with 3D electron microscopy. Mater Today 18:395–408. https://doi.org/10.1016/J.MATTOD.2015.04.004

    Article  CAS  Google Scholar 

  31. Zečević J, de Jong KP, de Jongh PE (2013) Progress in electron tomography to assess the 3D nanostructure of catalysts. Curr Opin Solid State Mater Sci 17:115–125. https://doi.org/10.1016/j.cossms.2013.04.002

    Article  CAS  Google Scholar 

  32. Kovarik L, Genc A, Wang C et al (2013) Tomography and high-resolution electron microscopy study of surfaces and porosity in a plate-like γ-Al2O3. J Phys Chem C 117:179–186. https://doi.org/10.1021/jp306800h

    Article  CAS  Google Scholar 

  33. López-Haro M, Aboussaïd K, Gonzalez JC et al (2009) Scanning transmission electron microscopy investigation of differences in the high temperature redox deactivation behavior of CePrOx particles supported on modified alumina. Chem Mater 21:1035–1045. https://doi.org/10.1021/cm8029054

    Article  CAS  Google Scholar 

  34. Hernández-Garrido JC, Desinan S, Di Monte R et al (2013) Self-assembly of one-pot synthesized CexZr1−xO2–BaO·nAl2O3 nanocomposites promoted by site-selective doping of alumina with barium. J Mater Chem A 1:3645. https://doi.org/10.1039/c3ta01214j

    Article  CAS  Google Scholar 

  35. Yu Y, Xin HL, Hovden R et al (2012) Three-dimensional tracking and visualization of hundreds of Pt–Co fuel cell nanocatalysts during electrochemical aging. Nano Lett 12:4417–4423. https://doi.org/10.1021/nl203920s

    Article  CAS  PubMed  Google Scholar 

  36. Wikander K, Hungría AB, Midgley PA et al (2007) Incorporation of platinum nanoparticles in ordered mesoporous carbon. J Colloid Interface Sci 305:204–208. https://doi.org/10.1016/j.jcis.2006.09.077

    Article  CAS  PubMed  Google Scholar 

  37. Gontard LC, Dunin-Borkowski RE, Ozkaya D (2008) Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J Microsc 232:248–259. https://doi.org/10.1111/j.1365-2818.2008.02096.x

    Article  CAS  PubMed  Google Scholar 

  38. Pinho L, Hernández-Garrido JC, Calvino JJ, Mosquera MJ (2013) 2D and 3D characterization of a surfactant-synthesized TiO2–SiO2 mesoporous photocatalyst obtained at ambient temperature. Phys Chem Chem Phys 15:2800. https://doi.org/10.1039/c2cp42606d

    Article  CAS  PubMed  Google Scholar 

  39. Sueda S, Yoshida K, Tanaka N (2010) Quantification of metallic nanoparticle morphology on TiO2 using HAADF-STEM tomography. Ultramicroscopy 110:1120–1127. https://doi.org/10.1016/j.ultramic.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  40. Hernández-Garrido JC, Yoshida K, Gai PL et al (2011) The location of gold nanoparticles on titania: a study by high resolution aberration-corrected electron microscopy and 3D electron tomography. Catal Today 160:165–169. https://doi.org/10.1016/J.CATTOD.2010.06.010

    Article  Google Scholar 

  41. Tanaka N, Yoshida K, Arai S (2012) In-situ gas study and 3D quantitation of titania photocatalysts by advanced electron microscopy. J Phys Conf Ser 371:012043. https://doi.org/10.1088/1742-6596/371/1/012043

    Article  CAS  Google Scholar 

  42. Jürgens B, Kübel C, Schulz C et al (2007) New gold and silver-gold catalysts in the shape of sponges and sieves. Gold Bull 40:142–149. https://doi.org/10.1007/BF03215571

    Article  Google Scholar 

  43. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B 107:209–232. https://doi.org/10.1016/j.snb.2004.10.006

    Article  CAS  Google Scholar 

  44. Mai H-X, Sun L-D, Zhang Y-W et al (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109:24380–24385. https://doi.org/10.1021/jp055584b

    Article  CAS  PubMed  Google Scholar 

  45. Tinoco M, Fernandez-Garcia S, Lopez-Haro M et al (2015) Critical influence of nanofaceting on the preparation and performance of supported gold catalysts. ACS Catal 5:3504–3513. https://doi.org/10.1021/acscatal.5b00086

    Article  CAS  Google Scholar 

  46. Liu Z, Xin H, Yu Z et al (2012) Atomic-scale compositional mapping and 3-dimensional electron microscopy of dealloyed PtCo3 catalyst nanoparticles with spongy multi-core/shell structures. J Electrochem Soc 159:F554–F559. https://doi.org/10.1149/2.051209jes

    Article  CAS  Google Scholar 

  47. Dehghan-Niri R, Walmsley JC, Holmen A et al (2012) Nanoconfinement of Ni clusters towards a high sintering resistance of steam methane reforming catalysts. Catal Sci Technol 2:2476. https://doi.org/10.1039/c2cy20325a

    Article  CAS  Google Scholar 

  48. Linton P, Hernandez-Garrido J-C, Midgley PA et al (2009) Morphology of SBA-15-directed by association processes and surface energies. Phys Chem Chem Phys 11:10973. https://doi.org/10.1039/b913755f

    Article  CAS  PubMed  Google Scholar 

  49. Bals S, Batenburg KJ, Liang D et al (2009) Quantitative three-dimensional modeling of zeotile through discrete electron tomography. J Am Chem Soc 131:4769–4773. https://doi.org/10.1021/ja8089125

    Article  CAS  PubMed  Google Scholar 

  50. Yoshida K, Makihara M, Tanaka N et al (2011) Specific surface area and three-dimensional nanostructure measurements of porous titania photocatalysts by electron tomography and their relation to photocatalytic activity. Microsc Microanal 17:264–273. https://doi.org/10.1017/S1431927610094419

    Article  CAS  PubMed  Google Scholar 

  51. Nan F, Song C, Zhang J et al (2011) STEM HAADF tomography of molybdenum disulfide with mesoporous structure. ChemCatChem 3:999–1003. https://doi.org/10.1002/cctc.201000403

    Article  CAS  Google Scholar 

  52. Shih S-J, Herrero PR, Li G et al (2011) Characterization of mesoporosity in ceria particles using electron microscopy. Microsc Microanal 17:54–60. https://doi.org/10.1017/S1431927610093980

    Article  CAS  PubMed  Google Scholar 

  53. Padgett E, Andrejevic N, Liu Z et al (2018) Editors’ choice—connecting fuel cell catalyst nanostructure and accessibility using quantitative cryo-STEM tomography. J Electrochem Soc 165:F173–F180. https://doi.org/10.1149/2.0541803jes

    Article  CAS  Google Scholar 

  54. López-Haro M, Tinoco M, Fernández-Garcia S et al (2018) A macroscopically relevant 3D-metrology approach for nanocatalysis research. Part Part Syst Charact 35:1700343. https://doi.org/10.1002/ppsc.201700343

    Article  CAS  Google Scholar 

  55. Roiban L, Koneti S, Morfin F et al (2017) Uncovering the 3D structure of combustion-synthesized noble metal-ceria nanocatalysts. ChemCatChem 9:4607–4613. https://doi.org/10.1002/cctc.201701474

    Article  CAS  Google Scholar 

  56. Leary R, Saghi Z, Armbrüster M et al (2012) Quantitative high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM) tomography and high-resolution electron microscopy of unsupported intermetallic GaPd2 catalysts. J Phys Chem C 116:13343–13352. https://doi.org/10.1021/jp212456z

    Article  CAS  Google Scholar 

  57. Prieto G, Zečević J, Friedrich H et al (2013) Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat Mater 12:34–39. https://doi.org/10.1038/nmat3471

    Article  CAS  PubMed  Google Scholar 

  58. Ersen O, Werckmann J, Houllé M et al (2007) 3D electron microscopy study of metal particles inside multiwalled carbon nanotubes. Nano Lett 7:1898–1907. https://doi.org/10.1021/nl070529v

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Bals S, Van Tendeloo G (2019) Understanding CeO2-based nanostructures through advanced electron microscopy in 2D and 3D. Part Part Syst Charact 36:1800287. https://doi.org/10.1002/ppsc.201800287

    Article  CAS  Google Scholar 

  60. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583. https://doi.org/10.1039/b502142c

    Article  CAS  PubMed  Google Scholar 

  61. Idriss H, Barteau MA (2000) Active sites on oxides: from single crystals to catalysts. Academic Press, London, pp 261–331

    Google Scholar 

  62. Janssen AH, Koster AJ, de Jong KP (2002) On the shape of the mesopores in zeolite Y: a three-dimensional transmission electron microscopy study combined with texture analysis. J Phys Chem B 106:11905–11909. https://doi.org/10.1021/jp025971a

    Article  CAS  Google Scholar 

  63. Koster AJ, Ziese U, Verkleij AJ et al (2000) Three-dimensional transmission electron microscopy: a novel imaging and characterization technique with nanometer scale resolution for materials science. J Phys Chem B 104:9368–9370. https://doi.org/10.1021/JP0015628

    Article  CAS  Google Scholar 

  64. Midgley PA, Weyland M, Yates TJV et al (2006) Nanoscale scanning transmission electron tomography. J Microsc 223:185–190. https://doi.org/10.1111/j.1365-2818.2006.01616.x

    Article  CAS  PubMed  Google Scholar 

  65. Yates TJV, Thomas JM, Fernandez J-J et al (2006) Three-dimensional real-space crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography. Chem Phys Lett 418:540–543. https://doi.org/10.1016/J.CPLETT.2005.11.031

    Article  CAS  Google Scholar 

  66. Pérez-Omil JA, Bernal S, Calvino JJ et al (2005) Combined HREM and HAADF scanning transmission electron microscopy: a powerful tool for investigating structural changes in thermally aged ceria–zirconia mixed oxides. Chem Mater 17:4282–4285. https://doi.org/10.1021/CM050976G

    Article  Google Scholar 

  67. Kaneko K, Inoke K, Freitag B et al (2007) Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Lett 7:421–425. https://doi.org/10.1021/nl062677b

    Article  CAS  PubMed  Google Scholar 

  68. Xu X, Saghi Z, Gay R, Möbus G (2007) Reconstruction of 3D morphology of polyhedral nanoparticles. Nanotechnology 18:225501. https://doi.org/10.1088/0957-4484/18/22/225501

    Article  CAS  Google Scholar 

  69. Florea I, Feral-Martin C, Majimel J et al (2013) Three-dimensional tomographic analyses of CeO2 nanoparticles. Cryst Growth Des 13:1110–1121. https://doi.org/10.1021/cg301445h

    Article  CAS  Google Scholar 

  70. Rao CNR, Nath M (2003) Inorganic nanotubesThe illustration of John Dalton (reproduced courtesy of the Library and Information Centre, Royal Society of Chemistry) marks the 200th anniversary of his investigations which led to the determination of atomic weights for hydrogen, nitrogen, carbon, oxygen, phosphorus and sulfur. Dalt Trans. https://doi.org/10.1039/b208990b

    Article  Google Scholar 

  71. Hungría AB, Eder D, Windle AH, Midgley PA (2009) Visualization of the three-dimensional microstructure of TiO2 nanotubes by electron tomography. Catal Today 143:225–229. https://doi.org/10.1016/j.cattod.2008.09.014

    Article  CAS  Google Scholar 

  72. González-Rovira L, Sánchez-Amaya JM, López-Haro M et al (2009) Single-step process to prepare CeO2 nanotubes with improved catalytic activity. Nano Lett 9:1395–1400. https://doi.org/10.1021/nl803047b

    Article  CAS  PubMed  Google Scholar 

  73. Avnir D, Farin D, Pfeifer P (1984) Molecular fractal surfaces. Nature 308:261–263. https://doi.org/10.1038/308261a0

    Article  CAS  Google Scholar 

  74. Kübel C, Niemeyer D, Cieslinski R, Rozeveld S (2010) Electron tomography of nanostructured materials—towards a quantitative 3D analysis with nanometer resolution. Mater Sci Forum 638–642:2517–2522. https://doi.org/10.4028/www.scientific.net/MSF.638-642.2517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from MINECO/FEDER (Project MAT2017-87579-R and MAT2016-81118-P) and Junta de Andalucía (Group FQM‐334) is gratefully acknowledged. J.C. Hernández‐Garrido thanks support from the Ramón y Cajal Fellowship Program (RYC‐2012‐10004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Hernández-Garrido.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hungría, A.B., Calvino, J.J. & Hernández-Garrido, J.C. HAADF-STEM Electron Tomography in Catalysis Research. Top Catal 62, 808–821 (2019). https://doi.org/10.1007/s11244-019-01200-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01200-2

Keywords

Navigation