Skip to main content

Advertisement

Log in

Reintroduction of songbirds from captivity: the case of the Great-billed Seed-finch (Sporophila maximiliani) in Brazil

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Ex situ breeding programs are a relevant strategy for recovering populations that are threatened in the wild. Thus, it is important to evaluate how different reintroduction strategies can affect population establishment, dynamics, survival, and local persistence. Herein, we use the Great-billed Seed-finch (Sporophila maximiliani), a songbird threatened with extinction in most Brazilian biomes, as an example. To identify scenarios that could result in viable populations in nature, we considered an introduction successful when the chance of surviving for 100 years was > 90%. Knowing the distribution of the captive populations, we also investigated where reintroductions should be promoted, considering the fragmented status of the natural vegetation and human pressures along the original southern range of S. maximiliani. We modeled the population viability under four different release schemes: one single area versus three different areas and, for each scheme, with or without the supplementation of individuals. The reintroductions would be successful if a minimum of 24 individuals were released in one single area or in three different areas, both with supplementation of four pairs per area over 5 years. However, few regions were appropriate for reintroduction from captivity, such as the central part of the Cerrado and the Atlantic Forest in the species distribution range. Specifically, areas such as veredas (palm swamps) should be target sites for reintroductions since the species is primarily common in these unique ecosystems. Our data indicated that any reintroduction needs monitoring, and individuals should be tracked to evaluate their effective establishment in the release areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen LH, Sunde P, Loeschcke V, Pertoldi C (2015) A population viability analysis on the declining population of Little Owl (Athene noctua) in Denmark using the stochastic simulation program VORTEX. Ornis Fenn 92:123–143

    Google Scholar 

  • Areta JI, Bodrati A, Thom G et al (2013) Natural history, distribution, and conservation of two nomadic Sporophila seedeaters specializing on bamboo in the Atlantic Forest. Condor 115:237–252. https://doi.org/10.1525/cond.2013.120064

    Article  Google Scholar 

  • Auffret AG, Plue J, Cousins SA (2015) The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44(Suppl 1):51–59. https://doi.org/10.1007/s13280-014-0588-6

    Article  PubMed Central  Google Scholar 

  • Bastos LF, Luz VLF, Reis IJ, Souza VL (2008) Apreensão de espécimes da fauna silvestre em Goiás—situação e destinação. Rev Biol Neotrop 5:51–63

    Google Scholar 

  • Batson WG, Gordon IJ, Fletcher DB, Manning AD (2015) Translocation tactics: a framework to support the IUCN Guidelines for wildlife translocations and improve the quality of applied methods. J Appl Ecol 52:1598–1607. https://doi.org/10.1111/1365-2664.12498

    Article  Google Scholar 

  • Bennett AF (2003) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN - The World Conservation Union, Gland

    Book  Google Scholar 

  • Berry O, Tocher MD, Gleeson DM, Sarre SD (2005) Effect of vegetation matrix on animal dispersal: genetic evidence from a study of endangered skinks. Conserv Biol 19:855–864. https://doi.org/10.1111/J.1523-1739.2005.00161.X

    Article  Google Scholar 

  • Biagolini-Jr C, Westneat DF, Francisco MR (2017) Does habitat structural complexity influence the frequency of extra-pair paternity in birds? Behav Ecol Sociobiol 71:101

    Article  Google Scholar 

  • BirdLife International (2017) Sporophila maximiliani. The Red List of Threatened Species. Downloaded on 5 May 2017-Downloaded on 5 May 2017

  • Blake JG, Loiselle BA (2002) Manakins (Pipridae) in second-growth and old-growth forests: patters of habitat use, movement, and survival. Auk 119:132–148

    Article  Google Scholar 

  • Bozzuto C, Hoeck PEA, Bagheri HC, Keller LF (2017) Modelling different reintroduction strategies for the critically endangered Floreana mockingbird. Anim Conserv 20:144–154. https://doi.org/10.1111/acv.12299

    Article  Google Scholar 

  • Brasil (2011) Plano de ação para prevenção e controle do desmamatamento e das queimadas: Cerrado. Brasilia, DF

    Google Scholar 

  • Brasil (2015) Mapeamento do uso e cobertura da terra do Cerrado—Projeto TerraClass 2013. Ministério do Meio Ambiente—MMA, Brasília

    Google Scholar 

  • Brasil (2016a) Sumário executivo—Livro Vermelho da Fauna Brasileira Ameaçada de Extinção

  • Brasil (2016b) Terceiro relatório nacional para a convenção sobre diversidade biológica. Ministério do Meio Ambiente - MMA, Brasilia

    Google Scholar 

  • Castellón TD, Sieving KE (2006) An experimental test of matrix permeability and corridor use by an endemic understory bird. Conserv Biol 20:135–145. https://doi.org/10.1111/j.1523-1739.2006.00332.x

    Article  PubMed  Google Scholar 

  • Destro GFG, Lucena T, Monti R et al (2012) Efforts to combat wild animals trafficking in Brazil. In: Lameed GA (ed) Biodiversity enrichment in a diverse world. Intech Open, London, pp 33–36

    Google Scholar 

  • Embrapa (2003) Estimativas do Produto Interno Bruto dos municípios do bioma Cerrado. Embrapa - Empresa Brasileira de Pesquisa Agropecuária, Brasilia

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Ferreira DF, Lopes LE (2017) Natural history of the Lined Seedeater Sporophila lineola (Aves: thraupidae) in southeastern Brazil. J Nat Hist 51:1425–1435

    Article  Google Scholar 

  • França LF, Marini MA (2010) Negative population trend for Chapada Flycatchers (Suiriri islerorum) despite high apparent annual survival. J Field Ornithol 81:227–236

    Article  Google Scholar 

  • Francisco MR (2006) Breeding biology of the Double-collared Seedeater (Sporophila caerulescens). Wilson J Ornithol 118:85–90

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2004) A primer of conservation genetics. University Press, Cambridge

    Book  Google Scholar 

  • Franklin JF, Lindenmayer DB (2009) Importance of matrix habitats in maintaining biological diversity. Proc Natl Acad Sci USA 106:349–350. https://doi.org/10.1073/pnas.0812016105

    Article  PubMed  PubMed Central  Google Scholar 

  • Franz I, Fontana CS (2013) Breeding biology of the Tawny-Bellied Seedeater (Sporophila hypoxantha) in southern Brazilian upland grasslands. Wilson J Ornithol 125:280–292. https://doi.org/10.1676/12-059.1

    Article  Google Scholar 

  • Fundação SOS Mata Atlântica, INPE (2016) Atlas dos remanescentes florestais da Mata Atlântica: período 2014-2015. São Paulo, SP

    Google Scholar 

  • Greenberg R, Gradwohl J (1997) Territoriality, adult survival, and dispersal in the Checker-throated Antwren in Panama. J Avian Biol 28:103–110

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49. https://doi.org/10.1038/23876

    Article  CAS  Google Scholar 

  • Hanski I, Simberloff D (1997) The Metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski IA, Gilpin ME (eds) Metapopulation biology: ecology, genetics, and evolution. Academic Press Inc, Cambridge, pp 5–26

    Chapter  Google Scholar 

  • Hijmans RJ (2017) Raster v2.3: geographic data analysis and modeling. Available at https://cran.r-project.org. CRAN. Accessed 2 Nov 2015

  • Husson F, Josse J, Le S, Mazet I (2014) FactoMineR package: multivariate exploratory data analysis and data mining with R. Available at http://cran.r-project/org. CRAN. Accessed 10 July 2016

  • Ibáñez-Álamo JD, Magrath RD, Oteyza JC et al (2015) Nest predation research: recent findings and future perspectives. J Ornithol 156:247–262

    Article  Google Scholar 

  • IBGE (2018) Projection of the Brazilian population. Available at www.ibge.gov.br. Accessed 30 July 2018

  • INPE (1998) Banco de dados FOGO. Available at http://www.dpi.inpe.br/proarco/bdqueimadas/. Accessed 30 July 2016

  • IUCN (2000) IUCN red list categories and criteria. IUCN - The World Conservation Union, Gland

    Google Scholar 

  • IUCN (2013) Guidelines for reintroducions and other conservation translocations. IUCN Species Survival Commission, Gland

    Google Scholar 

  • Jamieson IG (2010) Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs. Conserv Biol 25:115–123

    Article  PubMed  Google Scholar 

  • Jaramillo MA, Sharpe CJ (2018) Great-billed Seed-finch (Sporophila maximiliani) Handbook of the birds of the world alive. Lynx Editions, Barcelona

    Google Scholar 

  • Justice CO, Giglio L, Korontzi S et al (2002) The MODIS fire products. Remote Sens Environ 83:244–262

    Article  Google Scholar 

  • Kauffman JB, Cummings DL, Ward DE (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian Cerrado. J Ecol 82:519–531

    Article  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890. https://doi.org/10.1007/S10980-008-9245-4

    Article  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713. https://doi.org/10.1111/j.1523-1739.2005.00702.x

    Article  Google Scholar 

  • Klink CA, Macedo RF, Mueller CC (1995) De grão em grão o Cerrado perde espaço. Cerrado: impactos do processo de ocupação. Base de Dados Tropical - BDT

  • Kupfer JA, Malanson GP, Franklin SB (2006) Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob Ecol Biogeogr 15:8–20. https://doi.org/10.1111/j.1466-822X.2006.00204.x

    Article  Google Scholar 

  • Lacy RC, Pollak JP (2018) Vortex: a stochastic simulation of the extinction process. Version 10.3.1. Chicago Zological Society, Brookfield, Illinois

  • Lacy RC, Miller PS, Traylor-Holzer K (2018) Vortex 10 User’s Manual. 1 June 2018 update

  • Medolago CAB, Ubaid FK, Francisco MR, Silveira LF (2016) Description of the Nest and Eggs of the Great-billed Seed-Finch (Sporophila maximiliani). Wilson J Ornithol 128:638–642

    Article  Google Scholar 

  • Mittermeier RA, Myers N, Thomsen JB et al (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520

    Article  Google Scholar 

  • Morris WF, Bloch PL, Hudgens BR et al (2002) Population viability analysis in endangered species recovery plans: past use and future improvements. Ecol Appl 12:708–712

    Article  Google Scholar 

  • Myers N (2003) Biodiversity hotspots revisited. Bioscience 53:916–917

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Oliveira LS, Sousa LMS, Davanco PV, Francisco MR (2010) Breeding behavior of the Lined Seedeater (Sporophila lineola) in southeastern Brazil. Ornitol Neotrop 21:251–261

    Google Scholar 

  • Ovick TOJH, Lmore RDWE, Uhlendorf SADF et al (2015) Spatial heterogeneity increases diversity and stability in grassland bird communities. Ecol Appl 25:662–672

    Article  Google Scholar 

  • Pascual-Hortal L, Saura S (2007) Impact of spatial scale on the identification of critical habitat patches for the maintenance of landscape connectivity. Landsc Urban Plan 83:176–186. https://doi.org/10.1016/j.landurbplan.2007.04.003

    Article  Google Scholar 

  • Perkins DW, Vickery PD, Shriver WG (2008) Population viability analysis of the Florida Grasshopper Sparrow (Ammodramus savannarum floridanus): testing recovery golas and management options. Auk 125:167–177. https://doi.org/10.1525/auk.2008.125.1.167

    Article  Google Scholar 

  • Pivello VR (2011) The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. Fire Ecol 7:24–39. https://doi.org/10.4996/fireecology.0701024

    Article  Google Scholar 

  • Primack RB (2011) Essentials of conservation biology. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • QGIS Core Development Team (2016) Quantum GIS—geographic information system. Available at www.qgis.org. Open Source Geospatial Foundation Project. Accessed 30 Nov 2016

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramos-Neto MB, Pivello VR (2000) Lightning fires in a Brazilian Savanna National Park: rethinking management strategies. Environ Manage 26:675–684. https://doi.org/10.1007/s002670010124

    Article  CAS  PubMed  Google Scholar 

  • Repenning M, Fontana CS (2016) Breeding biology of the Tropeiro Seedeater (Sporophila beltoni). Auk 133:484–496. https://doi.org/10.1642/AUK-15-226.1

    Article  Google Scholar 

  • Ricklefs RE (1969) An analysis of nesting mortality in birds. Smithson Contrib Zool 9:1–48

    Article  Google Scholar 

  • Ridgely RS, Tudor G (1989) The Birds of South America, vol 1. The Oscines. UTP, Texas

    Google Scholar 

  • Ruffell J, Clout MN, Didham RK (2017) The matrix matters, but how should we manage it? Estimating the amount of high-quality matrix required to maintain biodiversity in fragmented landscapes. Ecography 40:171–178. https://doi.org/10.1111/ecog.02097

    Article  Google Scholar 

  • Runge CA, Martin TG, Possingham HP et al (2014) Conserving mobile species. Front Ecol Environ 12:395–402. https://doi.org/10.1890/130237

    Article  Google Scholar 

  • Sick H (2001) Ornitologia Brasileira, 3a edn. Editora Nova Fronteira, Rio de Janeiro

    Google Scholar 

  • Silva JMC (1997) Endemic bird species and conservation in the Cerrado Region, South America. Biodivers Conserv 6:435–450

    Article  Google Scholar 

  • Soule ME (1985) What is Conservation Biology? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems. Bioscience 35:727–734. https://doi.org/10.2307/1310054

    Article  Google Scholar 

  • Straube FC, Urben-Filho A (2008) Oryzoborus maximiliani (Canabis, 1851). In: Machado ABM, Drumond GM, Paglia AP (eds) Livro vermelho da fauna brasileira ameaçada de extinção. Brasil, Brasília, pp 538–539

    Google Scholar 

  • Tabarelli M, Da Silva MJC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425

    Article  Google Scholar 

  • Tarwater CE, Brawn JD (2010) The post-fledging period in a tropical bird: patterns of parental care and survival. J Avian Biol 41:479487

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571. https://doi.org/10.2307/3544927

    Article  Google Scholar 

  • Ubaid FK, Silveira LF, Medolago CAB et al (2018) Taxonomy, natural history, and conservation of the Great-billed Seed-Finch Sporophila maximiliani (Cabanis, 1851) (Thraupidae, Sporophilinae). Zootaxa 4442:551–571

    Article  PubMed  Google Scholar 

  • Vanderwal J, Falconi L, Januchowski S et al (2014) Package SDMTools—species distribution modelling tools: tools for processing data associated with species distribution modeling exercises. Available at https://cran.r-project.org. CRAN. Accessed 10 Feb 2015

  • Wakamiya SM, Roy CL (2009) Use of monitoring data and population viability analysis to inform reintroduction decisions: peregrine falcons in the Midwestern United States. Biol Conserv 142:1767–1776. https://doi.org/10.1016/j.biocon.2009.03.015

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Conselho Nacional de Desenvovimento Científico e Tecnológico – CNPq for providing a research grant to R. B. Machado (CNPq # 303838/2016-8) and to L.F. Silveira (CNPq # 302291/2015-6). We are grateful for the financial support provided by the Tropical Forest Conservation Act – TFCA, CNPq and FAPESP. CEMAVE/ICMBio provided permits for the fieldwork, and FUNBIO and the Instituto Pró-Terra provided logistical support. Breeders provided information about the Great-billed Seed-finch, and Bruno Ehlers (UPS) supported of our field and laboratory activities. We thank the PPBIO-Cerrado project grants to J.C. Dianese (CNPq # 457455/2012-8) and to L.F. Silveira (CNPq # 457444/2012-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Bomfim Machado.

Additional information

Communicated by David Hawksworth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, R.B., Silveira, L.F., da Silva, M.I.S.G. et al. Reintroduction of songbirds from captivity: the case of the Great-billed Seed-finch (Sporophila maximiliani) in Brazil. Biodivers Conserv 29, 1613–1636 (2020). https://doi.org/10.1007/s10531-019-01830-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01830-8

Keywords

Navigation