Skip to main content
Log in

\({\mathcal {N}}=1\) Geometric Supergravity and Chiral Triples on Riemann Surfaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a global geometric model for the bosonic sector and Killing spinor equations of four-dimensional \(\mathcal {N}=1\) supergravity coupled to a chiral non-linear sigma model and a \(\mathrm {Spin}^{c}_0\) structure. The model involves a Lorentzian metric g on a four-manifold M, a complex chiral spinor and a map \(\varphi :M\rightarrow \mathcal {M}\) from M to a complex manifold \(\mathcal {M}\) endowed with a novel geometric structure which we call a chiral triple. Using this geometric model, we show that if M is spin then the Kähler-Hodge condition on \(\mathcal {M}\) suffices to guarantee the existence of an associated \(\mathcal {N}=1\) chiral geometric supergravity. This positively answers a conjecture proposed by D. Z. Freedman and A. V. Proeyen. We dimensionally reduce the Killing spinor equations to a Riemann surface X, obtaining a novel system of partial differential equations for a harmonic map with potential \(\varphi :X\rightarrow \mathcal {M}\). We characterize all Riemann surfaces X admitting supersymmetric solutions with vanishing superpotential, showing that such solutions \(\varphi \) are holomorphic maps satisfying a certain condition involving the canonical bundle of X and the chiral triple of the theory. Furthermore, we determine the biholomorphism type of all Riemann surfaces carrying supersymmetric solutions with complete Riemannian metric and finite-energy scalar map \(\varphi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We thank the anonymous referee for clarifying this point.

  2. We thank an anonymous referee of Communications in Mathematical Physics for writing the following detailed explanation.

References

  1. Alekseevsky, D.V., Cortés, V.: Classification of \(N\)-(super)-extended Poincaré algebras and bilinear invariants of the spinor representation of \({\rm Spin}(p, q)\). Commun. Math. Phys. 183(3), 477–510 (1997)

    ADS  MATH  Google Scholar 

  2. Alekseevsky, D.V., Cortes, V., Devchand, C.: Special complex manifolds. J. Geom. Phys. 42, 85 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Alekseevsky, D.V., Cortés, V., Devchand, C., Proeyen, A.V.: Polyvector Super-Poincaré Algebras. Commun. Math. Phys. 253(2), 385–422 (2005)

    ADS  MATH  Google Scholar 

  4. Andrianopoli, L., Bertolini, M., Ceresole, A., D’Auria, R., Ferrara, S., Fre, P., Magri, T.: \(N=2\) supergravity and \(N=2\) super Yang–Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Andrianopoli, L., D’Auria, R., Ferrara, S.: U duality and central charges in various dimensions revisited. Int. J. Mod. Phys. A 13, 431 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Aschieri, P., Ferrara, S., Zumino, B.: Duality rotations in nonlinear electrodynamics and in extended supergravity. Riv. Nuovo Cim. 31, 625 (2008)

    ADS  Google Scholar 

  7. Bär, C.: Real Killing spinors and holonomy. Commun. Math. Phys. 154, 509–521 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249, 545–580 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Baum, H.: Complete Riemannian manifolds with imaginary Killing spinors. Ann. Glob. Anal. Geom. 7, 205–226 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Baum, H.: Odd-dimensional Riemannian manifolds admitting imaginary Killing spinors. Ann. Glob. Anal. Geom. 7, 141–153 (1989)

    MATH  Google Scholar 

  11. Beem, J.K., Ehrlich, P., Easley, K.: Global Lorentzian Geometry. Chapman and Hall/CRC Pure and Applied Mathematics. CRC Press Book, Boca Raton (1996)

    MATH  Google Scholar 

  12. Bernal, A.N., Sanchez, M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Cahen, M., Gutt, S., Lemaire, L., Spindel, P.: Killing spinors. Bull. Soc. Math. Belg. Ser. A38, 75–102 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Cremmer, E., Julia, B., Scherk, J., Ferrara, S., Girardello, L., van Nieuwenhuizen, P.: Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant. Nucl. Phys. B 147, 105 (1979)

    ADS  MathSciNet  Google Scholar 

  15. Cremmer, E., Scherk, J.: The supersymmetric nonlinear sigma model in four-dimensions and its coupling to supergravity. Phys. Lett. 74B, 341 (1978)

    ADS  Google Scholar 

  16. Dabholkar, A., Hull, C.: Duality twists, orbifolds, and fluxes. JHEP 0309, 054 (2003)

    ADS  MathSciNet  Google Scholar 

  17. Dhuria, M.: Topics in supergravity Phenomenology. PhD. Thesis, Physical Research Laboratory, Ahmedabad, India (2014)

  18. Drees, M., Godbole, R., Roy, P.: Theory and Phenomenology of Sparticles: An Account of Four-dimensional \(N=1\) supersymmetry in High Energy Physics. World Scientific, Hackensack (2004)

    Google Scholar 

  19. Donaldson, S., Thomas, R.: Gauge Theory in Higher Dimensions. The Geometric Universe: Science, Geometry, and the Work of Roger Penrose. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  20. Eells, J., Lemaire, L.: Selected topics in harmonic maps. In: CBMS Regional Conference Series in Mathematics, vol. 50 (1983)

  21. Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. London Math. Soc. 20, 385–524 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Fardoun, A., Ratto, A.: Harmonic maps with potential. Calc. Var. Partial Differ. Equ. 5, 183–197 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Figueroa-O’Farrill, J.M., Gadhia, S.: Supersymmetry and spin structures. Class. Quant. Grav. 22, L121 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Freed, D.S.: Special Kahler manifolds. Commun. Math. Phys. 203, 31 (1999)

    ADS  MATH  Google Scholar 

  25. Freedman, D.Z., Van Proeyen, A.: Supergravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  26. Freedman, D.Z., Roest, D., van Proeyen, A.: A geometric formulation of supersymmetry. Fortsch. Phys. 65(1), 1600106 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Friedrich, T.: Dirac Operators in Riemannian Geometry. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  28. Friedrich, T., Kim, E.C.: The Einstein–Dirac equation on Riemannian spin manifolds. J. Geom. Phys. 33(1–2), 128–172 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Friedrich, T., Kim, E.C.: Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors. J. Geom. Phys. 37(1–2), 1–14 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Friedrich, T., Trautman, A.: Spin spaces, Lipschitz groups and spinor bundles. Ann. Global Anal. Geom. 18(3–4), 221–240 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Forster, O.: Lectures on Riemann Surfaces. Springer, Berlin (1999)

    Google Scholar 

  32. Gran, U., Gutowski, J., Papadopoulos, G.: Geometry of all supersymmetric four-dimensional \(N=1\) supergravity backgrounds. JHEP 0806, 102 (2008)

    ADS  MathSciNet  Google Scholar 

  33. Gutowski, J., Papadopoulos, G.: Topology of supersymmetric \(N=1\), \(D=4\) supergravity horizons. JHEP 1011, 114 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1997)

    MATH  Google Scholar 

  35. Hellerman, S., McGreevy, J., Williams, B.: Geometric constructions of nongeometric string theories. JHEP 0401, 024 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)

    MathSciNet  MATH  Google Scholar 

  37. Huebscher, M., Meessen, P., Ortin, T.: Domain walls and instantons in \(N=1\), \(d=4\) supergravity. JHEP 1006, 001 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Hulin, D., Troyanov, M.: Prescribing curvature on open surfaces. Math. Ann. 293(2), 277–316 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Ikemakhen, A.: Parallel spinors on pseudo-Riemannian \({\rm Spin}^c\) manifolds. J. Geom. Phys. 56(9), 1473–1483 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Kazdan, J.L.: Prescribing the curvature of a Riemannian manifold. In: CBMS Regional Conference Series in Mathematics, vol. 57 (1985)

  41. Kazdan, J.L., Warner, F.W.: Curvature functions for compact 2-manifolds. Ann. Math. 99(1), 14–47 (1974)

    MathSciNet  MATH  Google Scholar 

  42. Lazaroiu, C.I., Babalic, E.M., Coman, I.A.: The geometric algebra of Fierz identities in various dimensions and signatures. JHEP 09, 156 (2013)

    ADS  Google Scholar 

  43. Lazaroiu, C.I., Shahbazi, C.S.: Generalized Einstein–Scalar–Maxwell theories and locally geometric U-folds. Rev. Math. Phys. 30, 1850012 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Lazaroiu, C.I., Shahbazi, C.S.: Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds. J. Geom. Phys. 128, 58 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Lazaroiu, C., Shahbazi, C. S.: Complex Lipschitz structures and bundles of complex Clifford modules. Preprint arXiv:1711.07765

  46. Lemaire, L.: On the existence of harmonic maps. Ph.D. Thesis, University of Warwick, (1977)

  47. Lemaire, L.: Applications harmoniques de surfaces Riemanniennes. J. Diff. Geom. 13, 51–78 (1978)

    MathSciNet  MATH  Google Scholar 

  48. Mc Duff, D., Salamon, D.: J-Holomorphic Curves and Symplectic Topology. American Mathematical Society, Providence (2004)

    Google Scholar 

  49. Meessen, P., Ortin, T.: Ultracold spherical horizons in gauged \(N=1\), \(d=4\) supergravity. Phys. Lett. B 693, 358 (2010)

    ADS  MathSciNet  Google Scholar 

  50. Moroianu, A.: Parallel and Killing spinors on \({\rm Spin}^c\) manifolds. Commun. Math. Phys. 187, 417–427 (1997)

    ADS  MATH  Google Scholar 

  51. Ortín, T.: The Supersymmetric solutions and extensions of ungauged matter-coupled \({\cal{N}}=1\), \(d=4\) supergravity. JHEP 0805, 034 (2008)

    ADS  MathSciNet  Google Scholar 

  52. Ortín, T.: Gravity and Strings. Cambridge Monographs on Mathematical Physics, 2nd edn. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  53. Reyes-Carrión, R.: A generalization of the notion of instanton. Diff. Geom. Appl. 8, 1–20 (1998)

    MathSciNet  MATH  Google Scholar 

  54. Strominger, A.: Special geometry. Commun. Math. Phys. 133, 163 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Tanii, Y.: Introduction to Supergravity. Springer Briefs in Mathematical Physics. Springer, Berlin (2014)

    MATH  Google Scholar 

  56. Verbitsky, M.: Plurisubharmonic functions in calibrated geometry and q-convexity. Math. Z. 264(4), 939–957 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Weil, A.: Introduction à l’étude des varietes Kahleriennes, Publications de l’Institut de Mathématique de l’Université de Nancago VI, Hermann, Paris

  58. Witten, E., Bagger, J.: Quantization of Newton’s constant in certain supergravity theories. Phys. Lett. 115B, 202 (1982)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

CSS would like to thank Mario García-Fernández for useful comments. The work of C. I. L. was supported by grants IBS-R003-S1 and IBS-R003-D1. The work of C.S.S. is supported by the Humboldt foundation through the Humboldt grant ESP 1186058 HFST-P. The work of V.C. and C.S.S. is supported by the German Science Foundation (DFG) under the Research Training Group 1670 Mathematics inspired by String Theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Shahbazi.

Additional information

Communicated by N. Nekrasov

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortés, V., Lazaroiu, C.I. & Shahbazi, C.S. \({\mathcal {N}}=1\) Geometric Supergravity and Chiral Triples on Riemann Surfaces. Commun. Math. Phys. 375, 429–478 (2020). https://doi.org/10.1007/s00220-019-03476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03476-7

Navigation