Skip to main content

Advertisement

Log in

Compressibility and structure behaviour of maruyamaite (K-tourmaline) from the Kokchetav massif at high pressure up to 20 GPa

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The structural behaviour of maruyamaite (K-dominant tourmaline) X(K0.54Na0.28Ca0.19)Y(Mg1.3Al1.17Fe0.39Ti0.14)Z(Al5Mg)[Si5.95Al0.05O18](BO3)3V,W[O1.69(OH)2.31] from the ultrahigh-pressure metamorphic rocks of Kokchetav massif was studied using synchrotron based single-crystal diffraction up to 20 GPa. Within the whole pressure range the compression is regular and anisotropic, with the c direction being more compressible than the a direction. Fitting the V/P data with the 2nd and 3rd order Birch-Murnaghan equations of state gives: V0 = 1587.2(7) Å3, K0 = 115.6(9) GPa at fixed K′ = 4, and V0 = 1588(1) Å3, K0 = 112(3) GPa, K′ = 4.5(4). The bulk modulus values are slightly higher as compared to those found for dravite and cation-deficient synthetic K-dravite. The pressure evolution of the main structural parameters of K-tourmaline is similar to those of dravite. However, a minor change in the rigidity of local contacts of the X site with 6-membered ring, due to the presence of K, is apparently critical for stabilization of tourmaline structure within 15–20 GPa, which is evinced by the absence of the phase transition observed in dravite near 15.4 GPa. The stabilizing function of K becomes apparent at P > 15 GPa. The comparison of the HP structural behaviour of maruyamaite and dravite supports the recent suggestion that the large X site plays a secondary role in the elastic behaviour of tourmaline, compared to the octahedral framework. In addition, the present study reveals several new features of polyhedra distortions, which demonstrate their complex interaction on compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agilent (2012) CrysAlis PRO. Agilent Technologies, Yarnton

    Google Scholar 

  • Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit-7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419

    Google Scholar 

  • Barton R (1969) Refinement of the crystal structure of buergerite and the absolute orientation of tourmalines. Acta Cryst B25:1524–1533

    Article  Google Scholar 

  • Berryman EJ, Wunder B, Rhede D (2014) Synthesis of K-dominant tourmaline. Am Mineral 99:539–542

    Article  Google Scholar 

  • Berryman EJ, Wunder B, Wirth R, Rhede D, Schettler G, Franz G, Heinrich W (2015) An experimental study on K and Na incorporation in dravitic tourmaline and insight into the formation environment of diamoniferous tourmaline from the Kokchetav, Massif, Kazakhstan. Contrib Mineral Petrol 169:28

    Article  Google Scholar 

  • Berryman EJ, Wunder B, Ertl A, Koch-Müller M, Rhede D, Scheidl K, Giester G, Heinrich W (2016) Influence of the X-site composition on tourmaline’s crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy. Phys Chem Miner 43:83–102

    Article  Google Scholar 

  • Berryman EJ, Zhang D, Wunder B, Duffy TS (2018) High-pressure compressibility of synthetic tourmaline of near end-member compositions. AGU 2018 Abstracts

  • Bloodaxe ES, Hughes JM, Dyar MD, Grew ES, Guidotti CV (1999) Linking structure and chemistry in the Schorl-Dravite series. Am Mineral 84:922–928

    Article  Google Scholar 

  • Capillas C, Tasci ES, de la Flor G, Orobengoa D, Perez-Mato JM, Aroyo MI (2011) A new computer tool at the Bilbao Crystallographic Server to detect and characterize pseudosymmetry. Z Kristallogr 226:186–196

    Article  Google Scholar 

  • Dietrich RV (1985) The tourmaline group. Van Nostrand Reinhold Company Inc., New York

    Book  Google Scholar 

  • Dutrow BL, Henry DJ (2011) Tourmaline: A geologic DVD. Elements 7:301–306

    Article  Google Scholar 

  • Finkelstein GJ, Dera PK, Duffy TS (2015) High-pressure phases of cordierite from single-crystal X-ray diffraction to 15 GPa. Am Mineral 100:1821–1833

    Article  Google Scholar 

  • Foit FF (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. Am Mineral 74:422–431

    Google Scholar 

  • Gorskaya MG, Frank-Kamenetskaya OV, Rozhdestvenskaya IV, Frank-Kamenetskii VA (1982) Refinement of the crystal structure of Al-rich elbaite, and some aspects of the crystal chemistry of tourmalines. Soviet Physics Crystallogr 27:6

    Google Scholar 

  • Hawthorne FC (2002) Bond-valence constraints on the chemical composition of tourmaline. Can Mineral 40:789–797

    Article  Google Scholar 

  • Hawthorne FC, Dirlam DM (2011) Tourmaline, the indicator mineral: From atomic arrangement to Viking navigation. Elements 7:307–312

    Article  Google Scholar 

  • Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11:201–215

    Article  Google Scholar 

  • Hawthorne FC, MacDonald DJ, Burns PC (1993) Reassignment of cation site-occupancies in tourmaline: Al/Mg disorder in the crystal structure of dravite. Am Mineral 78:265–270

    Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. Rev Mineral 33:503–557

    Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline super-group minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Hezel DC, Kalt A, Marschall HR, Ludwig T, Meyer H-P (2011) Major-element and Li, Be compositional evolution of tourmaline in an Stype granite–pegmatite system and its country rocks: an example from Ikaria, Aegean Sea, Greece. Can Mineral 49:321–340

    Article  Google Scholar 

  • Hwang SL, Shen P, Chu HT, Yui TF, Liou JG, Sobolev NV, Shatsky VS (2005) Crust-derived potassic fluid in metamorphic microdiamond. Earth Planet Sci Lett 231:295–306

    Article  Google Scholar 

  • Li H, Qin S, Zhu X, Liu J, Li X, Wu X, Wu Z (2004) In situ high-pressure X-ray diffraction of natural tourmaline. Nuclear techniques 27:919–922

    Google Scholar 

  • Liebau F (1985) Structural Chemistry of the Silicates. Structure, Bonding, and Classification. Springer-Verlag, Berlin

  • Likhacheva AY, Rashchenko SV, Seryotkin YV (2012) The deformation mechanism of pressure-induced phase transition in dehydrated analcime. Mineral Mag 76:129–142

    Article  Google Scholar 

  • Ludwig T, Marschall HR, Pogge von Strandmann PAE, Shabaga BM, Fayek M, Hawthorne FC (2011) A secondary ion mass spectrometry (SIMS) re-evaluation of B and Li isotopic compositions of Cu-bearing elbaite from three global localities. Mineral Mag 75:2485–2494

    Article  Google Scholar 

  • Lussier AJ, Aguiar PM, Michaelis VK, Kroeker S, Herwig S, Abdu Y, Hawthorne FC (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: I. Crystal chemistry by SREF, EMPA, MAS NMR and Mössbauer spectroscopy. Mineral Mag 72:747–761

    Article  Google Scholar 

  • Lussier AJ, Abdu Y, Hawthorne FC, Michaelis VK, Aguiar PM, Kroeker S (2011) Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy. Can Mineral 49:63–88

    Article  Google Scholar 

  • Lussier AJ, Hawthorne FC (2011) Oscillatory zoned liddicoatite from central Madagascar. II. Compositional variations and substitution mechanisms. Can Mineral 49:89–104

    Article  Google Scholar 

  • Lussier AJ, Ball NA, Hawthorne FC, Henry DJ, Shimizu R, Ogasawara Y, Ota T (2016) Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure. Am Mineral 101:355–361

    Article  Google Scholar 

  • MacDonald DJ, Hawthorne FC (1995) The crystal chemistry of Si <−-> Al substitution in tourmaline. Can Mineral 33:849–858

    Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Marschall HR, Ludwig T, Altherr R, Kalt A, Tonarini S (2006) Syros metasomatic tourmaline: Evidence for very high-d11B fluids in subduction zones. J Petrol 47:1915–1942

    Article  Google Scholar 

  • Marschall HR, Jiang S-Y (2011) Tourmaline Isotopes: No element left behind. Elements 7:313–319

    Article  Google Scholar 

  • Martin RF (2011) Can Mineral 49, pp 1–405

  • Merlini M, Hafland M (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Pressure Res 33:511–522

    Article  Google Scholar 

  • Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W (2008) Boron isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Mineral Petrol 156:259–267

    Article  Google Scholar 

  • Miletich R, Gatta GD, Willi T, Mirwald PW, Lotti P, Merlini M (2014a) Cordierite under hydrostatic compression: anomalous elastic behavior as a precursor for a pressure-induced phase transition. Am Mineral 99:479–493

    Article  Google Scholar 

  • Miletich R, Scheidl KS, Schmitt M, Moissl AP, Pippinger T, Gatta GD, Schuster B, Trautmann C (2014b) Static elasticity of cordierite I: effect of heavy ion irradiation on the compressibility of hydrous cordierite. Phys Chem Miner 41:579–591

    Article  Google Scholar 

  • Novák M, Škoda P, Filip J, Macek I, Vaculovič T (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic; electron microprobe, Mössbauer and LA-ICP-MS study. Can Mineral 49:359–380

    Article  Google Scholar 

  • O’Bannon E, Beavers CM, Kunz M, Williams Q (2018) High-pressure study of dravite tourmaline: Insights into the accommodating nature of the tourmaline structure. Am Mineral 101:1622–1633

    Article  Google Scholar 

  • O’Bannon E, Williams Q (2016) Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa. Phys Chem Miner 43:671–687

    Article  Google Scholar 

  • Ota T, Kobayashi K, Kunihiro T, Nakamura E (2008a) Boron cycling by subducted lithosphere; insights from diamondiferous tourmaline from the Kokchetav ultrahigh-pressure metamorphic belt. Geochim Cosmochim Acta 72:3531–3541

    Article  Google Scholar 

  • Ota T, Kobayashi K, Katsura T, Nakamura E (2008b) Tourmaline breakdown in a pelitic system: implications for boron cycling through subduction zones. Contrib Mineral Petrol 155:19–32

    Article  Google Scholar 

  • Pertlik F, Ertl A, Körner W, Brandstätter F, Schuster R (2003) Na-rich dravite in the marbles from Friesach. Chemistry and crystal structure. Neues Jahrbuch für Mineralogie Monatshefte, Carinthia, pp 277–288

    Google Scholar 

  • Petříček V, Dušek M, Palatinus L (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie - Crystalline Materials 229:345–352

    Google Scholar 

  • Prencipe M, Scanavino I, Nestola F, Merlini M, Civalleri B, Bruno M, Dovesi R (2011) High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Phys Chem Miner 38:223–239

    Article  Google Scholar 

  • Rothkirch A, Gatta GD, Meyer M, Merkel S, Merlini M, Liermann H-P (2013) Single-crystal diffraction at the Extreme Conditions beamline P02.2: procedure for collecting and analyzing high-pressure single-crystal data. J Synchrotron Radiat 20:711–720

    Article  Google Scholar 

  • Seryotkin YV, Bakakin VV, Bazhan IS (2005) The structure of dehydrated (Li0.7Na0.3)-analcime: a trigonal deformation of the framework and new low-coordinated non-framework positions. J Struct Chem 46:681–693

    Google Scholar 

  • Seryotkin YV, Bakakin VV (2008) The thermal behavior of secondary analcime and leucite derivate and its structural interpretation. Russ Geol Geophys 49:207–213

    Article  Google Scholar 

  • Seryotkin YV, Sokol EV, Bakakin VV, Likhacheva AY (2008) Pyrometamorphic osumilite: occurrence, paragenesis, and crystal structure as compared to cordierite. Eur J Mineral 20:191–198

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–776

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Article  Google Scholar 

  • Schertl H-P, Sobolev NV (2013) The Kokchetav Massif, Kazakhstan: “Type locality” of diamond bearing UHP metamorphic rocks. J Asian Earth Sci 63:5–38

    Article  Google Scholar 

  • Shimizu R, Ogasawara Y (2005) Discovery of K-tourmaline in diamond- bearing quartz-rich rock from the Kokchetav Massif, Kazakhstan. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 150:141

    Google Scholar 

  • Shimizu R, Ogasawara Y (2013) Diversity of potassium-bearing tourmalines in diamondiferous Kokchetav UHP metamorphic rocks: a geochemical recorder from peak to retrograde metamorphic stages. J Asian Earth Sci 63:39–55

    Article  Google Scholar 

  • van Hinsberg V, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Can Mineral 49:1–16

    Article  Google Scholar 

  • van Hinsberg VJ, Schumacher JC (2007) Using estimated thermodynamic properties to model accessory phases: the case of tourmaline. J Metamorph Geol 25:769–779

    Article  Google Scholar 

  • Xu J, Kuang Y, Zhang B, Liu Y, Fan D, Li X, Xie H (2016) Thermal equation of state of natural tourmaline at high pressure and temperature. Phys Chem Miner 43:315–326

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Cempírek and an anonymous reviewer for their helpful remarks, as well as to Yu.V. Seryotkin for valuable discussion of the results. This study is supported by the Russian Scientific Foundation (project 18-17-00186). Diffraction experiments were carried at the European Synchrotron Radiation Facility and supported by approval of ESRF Proposal ES-810.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Yu. Likhacheva.

Additional information

Editorial handling: S. W. Faryad

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

F-f plots based on the Birch-Murnaghan 2nd order (a) and 3rd order (b) EoS fit of the pressure volume data for maruyamaite. (PNG 135 kb)

High Resolution Image (EPS 6239 kb)

Fig. S2

Pressure dependence of the T6O18 ring ditrigonality in maruyamaite (solid symbols) and dravite (empty symbols, data compiled from O’Bannon et al. 2018) structure. (PNG 32 kb)

High Resolution Image (EPS 63 kb)

Fig. S3

Pressure dependence of the T6O18 ring puckering in maruyamaite (solid symbols) and dravite (empty symbols, data compiled from O’Bannon et al. 2018) structure. (PNG 41 kb)

High Resolution Image (EPS 64 kb)

ESM 1

(ZIP 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhacheva, A.Y., Rashchenko, S.V., Musiyachenko, K.A. et al. Compressibility and structure behaviour of maruyamaite (K-tourmaline) from the Kokchetav massif at high pressure up to 20 GPa. Miner Petrol 113, 613–623 (2019). https://doi.org/10.1007/s00710-019-00672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-019-00672-0

Keywords

Navigation