Skip to main content
Log in

Gaussian Bounds for the Weighted Heat Kernels on the Interval, Ball, and Simplex

  • Published:
Constructive Approximation Aims and scope

Abstract

The aim of this article is to establish two-sided Gaussian bounds for the heat kernels on the unit ball and simplex in \({{\mathbb {R}}}^n\), and in particular on the interval, generated by classical differential operators whose eigenfunctions are algebraic polynomials. To this end we develop a general method that employs the natural relation of such operators with weighted Laplace operators on suitable subsets of Riemannian manifolds and the existing general results on heat kernels. Our general scheme allows us to consider heat kernels in the weighted cases on the interval, ball, and simplex with parameters in the full range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer, New York (1998)

    Book  Google Scholar 

  2. Coulhon, T., Kerkyacharian, G., Petrushev, P.: Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl. 18, 995–1066 (2012)

    Article  MathSciNet  Google Scholar 

  3. Coulhon, T., Sikora, A.: Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem. Proc. Lond. Math. Soc. 96, 507–544 (2008)

    Article  MathSciNet  Google Scholar 

  4. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  5. Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, vol. 155, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  6. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics, vol. 19, Second revised and extended edn. Walter de Gruyter and Co., Berlin (2011)

    MATH  Google Scholar 

  7. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)

    Article  MathSciNet  Google Scholar 

  8. Frazier, M., Jawerth, B.: A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)

    Article  MathSciNet  Google Scholar 

  9. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley theory and the study of function spaces. In: CBMS, vol. 79, AMS (1991)

  10. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds. (Russian) Mat. Sb. 182(1), 55–87 (1991). (Translation in Math. USSR-Sb. vol. 72, no. 1, pp. 47–77 (1992))

    Article  MathSciNet  Google Scholar 

  11. Grigor’yan, A.: Heat kernel and analysis on manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. International Press, Boston (2009)

    MATH  Google Scholar 

  12. Gyrya, P., Saloff-Coste, L.: Neumann and Dirichlet heat kernels in inner uniform domains. Astérisque, No. 336, viii+144 (2011)

  13. Ivanov, K., Petrushev, P., Xu, Y.: Sub-exponentially localized kernels and frames induced by orthogonal expansions. Math. Z. 264, 361–397 (2010)

    Article  MathSciNet  Google Scholar 

  14. Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Am. Math. Soc. 367, 121–189 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kerkyacharian, G., Petrushev, P., Xu, Y.: Gaussian bounds for the heat kernels on the ball and simplex: classical approach, Studia Math. (to appear) arXiv:1801.07326

  16. Klingenberg, W.: Riemannian geometry. Walter de Gruyter Studies in Mathematics, vol. 1. Walter de Gruyter, Berlin (1982)

    MATH  Google Scholar 

  17. Kyriazis, G., Petrushev, P.: “Compactly” supported frames for spaces of distributions on the ball. Monatsh. Math 165, 365–391 (2012)

    Article  MathSciNet  Google Scholar 

  18. Kyriazis, G., Petrushev, P., Xu, Y.: Jacobi decomposition of weighted Triebel–Lizorkin and Besov spaces. Studia Math. 186, 161–202 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kyriazis, G., Petrushev, P., Xu, Y.: Decomposition of weighted Triebel–Lizorkin and Besov spaces on the ball. Proc. Lond. Math. Soc. 97, 477–513 (2008)

    Article  MathSciNet  Google Scholar 

  20. Lang, S.: Fundamentals of Differential Geometry. Springer, New York (1999)

    Book  Google Scholar 

  21. Nowak, A., Sjögren, P.: Sharp estimates of the Jacobi heat kernel. Studia Math. 218(3), 219–244 (2013)

    Article  MathSciNet  Google Scholar 

  22. Petrushev, P., Xu, Y.: Localized polynomial frames on the interval with Jacobi weights. J. Fourier Anal. Appl. 11, 557–575 (2005)

    Article  MathSciNet  Google Scholar 

  23. Petrushev, P., Xu, Y.: Localized polynomial frames on the ball. Constr. Approx. 27, 121–148 (2008)

    Article  MathSciNet  Google Scholar 

  24. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Not. 2, 27–38 (1992)

    Article  Google Scholar 

  25. Saloff-Coste, L.: The Heat Kernel and Its Estimates. Probabilistic Approach to Geometry. Advanced Studies in Pure Mathematics, vol. 57, pp. 405–436. Mathematical Society of Japan, Tokyo (2010)

    Book  Google Scholar 

  26. Sauvigny, F.: Partial Differential Equations 1: Foundations and Integral Representations. Universitext. Springer, Berlin (2006)

    MATH  Google Scholar 

  27. Szegö, G.: Orthogonal Polynomials, vol. 23, 4th edn. American Mathematical Society Colloquium Publications, Providence (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pencho Petrushev.

Additional information

Communicated by Edward B. Saff.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author has been supported by ANR Forewer. The second author has been supported by NSF Grant DMS-1714369. The third author has been supported by NSF Grant DMS-1510296.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerkyacharian, G., Petrushev, P. & Xu, Y. Gaussian Bounds for the Weighted Heat Kernels on the Interval, Ball, and Simplex. Constr Approx 51, 73–122 (2020). https://doi.org/10.1007/s00365-019-09458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-019-09458-1

Keywords

Mathematics Subject Classification

Navigation