Skip to main content
Log in

Origin of Hematopoietic Stem Cells in Embryonic Development

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Bone marrow is the main hematopoietic organ of mature mammals. Hematopoietic stem cells (HSCs) are maintained in it throughout an organism’s whole life; it also regulates the production of mature blood cells. Adult HSCs are characterized by polypotency, self-renewal, and a specific phenotype, as well as by the ability to direct migration to the hematopoietic organs. The ability of the HSCs to restore hematopoiesis after transplantation into another organism is the main functional criterion for their existence in tissue. However, HSCs, which function in postnatal ontogenesis and possess these properties, represent the final stage of maturation of their precursors (pre-HSCs), which arise in prenatal development. In embryogenesis, hematopoiesis occurs in several transitional blood-forming organs: the yolk sac, aorta-gonad-mesonephros (AGM), placenta, and liver. Despite the long history of research on hematopoietic system ontogenesis, the anatomical site of the origination of the first pre-HSCs, which give rise to the definitive HSC line, is still not entirely clear. The review summarizes modern concepts of the features of the hematopoietic cells formed in the yolk sac, AGM, and placenta, and their contribution to embryonic liver colonization and in definitive hematopoiesis. Further study of the mechanisms of HSC formation in embryogenesis is of undoubted importance, not only for an understanding of the fundamental aspects of hematopoietic system functioning but also for improvement in treatment methods for hematological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Al-Drees, M.A., Yeo, J.H., Boumelhem, B.B., et al., Making blood: the haematopoietic niche throughout ontogeny, Stem Cells Int., 2015, vol. 2015, art. ID 571893.https://doi.org/10.1155/2015/571893

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alvarez-Silva, M., Belo-Diabangouaya, P., Salaün, J., and Dieterlen-Lièvre, F., Mouse placenta is a major hematopoietic organ, Development, 2003, vol. 130, no. 22, pp. 5437–5444.

    Article  CAS  PubMed  Google Scholar 

  3. Anckaert, M.A. and Symann, M., In vivo induction of granulopoiesis in visceral yolk-sac cells by fetal hepatic factors, J. Embryol. Exp. Morphol., 1983, vol. 73, pp. 87–95.

    CAS  PubMed  Google Scholar 

  4. Auerbach, R., Huang, H., and Lu, L., Hematopoietic stem cells in the mouse embryonic yolk sac, Stem Cells, 1996, vol. 14, no. 3, pp. 269–280.

    Article  CAS  PubMed  Google Scholar 

  5. Azevedo, P.N., Tavares, G.P., Croy, B.A., and Pelajo-Machado, M., Localization of transient immature hematopoietic cells to two distinct, potential niches in the developing mouse placenta, Placenta, 2016, vol. 47, pp. 1–11.

    Article  CAS  Google Scholar 

  6. Bárcena, A., Muench, M.O., Kapidzic, M., and Fisher, S.J., A new role for the human placenta as a hematopoietic site throughout gestation, Reprod. Sci., 2009, vol. 16, no. 2, pp. 178–187.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baron, M.H., Concise review: early embryonic erythropoiesis: not so primitive after all, Stem Cells, 2013, vol. 31, no. 5, pp. 849–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhatia, M., Wang, J.C.Y., Kapp, U., et al., Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 10, pp. 5320–5325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blair, A. and Thomas, D.B., Preferential adhesion of fetal liver derived primitive haemopoietic progenitor cells to bone marrow stroma, Br. J. Hematol., 1997, vol. 99, no. 4, pp. 726–31.

    Article  CAS  Google Scholar 

  10. Chagraoui, J., Lepage-Noll, A., Anjo, A., et al., Fetal liver stroma consists of cells in epithelial-to-mesenchymal transition, Blood, 2003, vol. 101, no. 8, pp. 2973–2982.

    Article  CAS  PubMed  Google Scholar 

  11. Challier, J.C., Galtier, M., Cortez, A., et al., Immunocytological evidence for hematopoiesis in the early human placenta, Placenta, 2005, vol. 26, no. 4, pp. 282–288.

    Article  CAS  PubMed  Google Scholar 

  12. Charbord, P., Oostendorp, R., Pang, W., et al., Comparative study of stromal cell lines derived from embryonic, fetal and postnatal mouse blood-forming tissues, Exp. Hematol., 2002, vol. 30, no. 10, pp. 1202–1210.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, M.J., Li, Y., De Obaldia, M.E., et al., Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells, Cell Stem Cell, 2011, vol. 9, no. 6, pp. 541–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chhabra, A., Lechner, A.J., Ueno, M., et al., Trophoblasts regulate the placental hematopoietic niche through PDGF-B signaling, Dev. Cell, 2012, vol. 22, no. 3, pp. 651–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi, K., Kennedy, M., Kazarov, A., et al., A common precursor for hematopoietic and endothelial cells, Development, 1998, vol. 125, no. 4, pp. 725–732.

    CAS  PubMed  Google Scholar 

  16. Chou, S. and Lodish, H.F., Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 17, pp. 7799–7804.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Clapp, D.W., Freie, B., Lee, W.H., and Zhang, Y.Y., Molecular evidence that in situ-transduced fetal liver hematopoietic stem/progenitor cells give rise to medullary hematopoiesis in adult, Blood, 1995, vol. 86, pp. 2113–2122.

    CAS  PubMed  Google Scholar 

  18. Cumano, A., Dieterlen-Lièvre, F., and Godin, I., Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura, Cell, 1996, vol. 86, no. 6, pp. 907–916.

    Article  CAS  PubMed  Google Scholar 

  19. Dagher, R.N., Hiatt, K., Traycoff, C., et al., c-Kit and CD38 are expressed by long-term reconstituting hematopoietic cells present in the murine yolk sac, Biol. Blood Marrow Transplant., 1998, vol. 4, no. 2, pp. 69–74.

    Article  CAS  PubMed  Google Scholar 

  20. de Bruijn, M.F., Speck, N.A., Peeters, M.C., and Dzierzak, E., Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo, EMBO J., 2000, vol. 19, no. 11, pp. 2465–2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dieterlen-Lièvre, F., On the origin of haemopoietic stem cells in the avian embryo: an experimental approach, J. Embryol. Exp. Morphol., 1975, vol. 33, no. 3, pp. 607–619.

  22. Dzierzak, E. and Robin, C., Placenta as a source of hematopoietic stem cells, Trends Mol. Biol., 2010, vol. 16, no. 8, pp. 361–367.

    CAS  Google Scholar 

  23. Fang, J.S., Gritz, E.C., Marcelo, K.L., and Hirschi, K.K., Isolation of murine embryonic hemogenic endothelial cells, J. Visualized Exp., 2016, vol. 112. https://doi.org/10.3791/54150

  24. Frame, J.M., Fegan, K.H., Conway, S.J., et al., Definitive hematopoiesis in the yolk sac emerges from Wnt-responsive hemogenic endothelium independently of circulation and arterial identity, Stem Cells, 2016, vol. 34, no. 2, pp. 431–444.

    Article  CAS  PubMed  Google Scholar 

  25. Gekas, C., Dieterlen-Lièvre, F., Orkin, S.H., and Mikkola, H.K., The placenta is a niche for hematopoietic stem cells, Dev. Cell, 2005, vol. 8, no. 3, pp. 365–375.

    Article  CAS  Google Scholar 

  26. Gekas, C., Rhodes, K.E., van Handel, B., et al., Hematopoietic stem cell development in the placenta, Int. J. Dev. Biol., 2010, vol. 54, nos. 6–7, pp. 1089–1098.

  27. Ginhoux, F., Greter, M., Leboeuf, M., et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Science, 2010, vol. 330, no. 6005, pp. 841–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gomez Perdiguero, E., Klapproth, K., Schulz, C., et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors, Nature, 2015, vol. 518, no. 7540, pp. 547–551.

    Article  CAS  PubMed  Google Scholar 

  29. Haar, J.L. and Ackerman, G.A, A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse, Anat. Rec., 1971, vol. 170, no. 2, pp. 199–223.

    Article  CAS  PubMed  Google Scholar 

  30. He, W.-Y., Lan, Y., Yao, H.-.Y., et al., Interleukin-3 promotes hemangioblast development in mouse aorta-gonad-mesonephros region, Haematologica, 2010, vol. 95, no. 6, pp. 875–883.

    Article  CAS  PubMed  Google Scholar 

  31. Houssaint, E., Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line, Cell Differ., 1981, vol. 10, no. 5, pp. 243–252.

    Article  CAS  PubMed  Google Scholar 

  32. Huber, T.L., Kouskoff, V., Fehling, H.J., et al., Haemangioblast commitment is initiated in the primitive streak of the mouse embryo, Nature, 2004, vol. 432, no. 7017, pp. 625–630.

    Article  CAS  PubMed  Google Scholar 

  33. Ivanovs, A., Rybtsov, S., Welch, L., et al., Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region, J. Exp. Med., 2011, vol. 208, no. 12, pp. 2417–2427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ivanovs, A., Rybtsov, S., Anderson, R.A., et al., Identification of the niche and phenotype of the first human hematopoietic stem cells, Stem Cell Rep., 2014, vol. 2, no. 4, pp. 449–456.

    Article  Google Scholar 

  35. Iwasaki, H., Arai, F., Kubota, Y., et al., Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver, Blood, 2010, vol. 116, no. 4, pp. 544–553.

    Article  CAS  PubMed  Google Scholar 

  36. Ji, H., Yu, X.Z., and Wagner, T.E., A long-term culture system for the expansion of hematopoietic stem cells from embryonic yolk sac with the capacity to seed erythroid and lymphoid development in vitro and to reconstitute the lymphoid compartment in severe combined immunodeficient mice, Artif. Organs, 1996, vol. 20, no. 10, pp. 1093–1109.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson, G.R. and Moore, M.A., Role of stem cell migration in initiation of mouse fetal liver haemopoiesis, Nature, 1975, vol. 258, no. 5537, pp. 726–728.

    Article  CAS  PubMed  Google Scholar 

  38. Kajikhina, K., Tsuneto, M., and Melchers, F., Environments of hematopoiesis and B-lymphopoiesis in fetal liver, Clin. Exp. Rheumatol., 2015, vol. 33, no. 4, pp. S91–S93.

    PubMed  Google Scholar 

  39. Kieusseian, A., Brunet de la Grange, P., Burlen-Defranoux, O., et al., Immature hematopoietic stem cells undergo maturation in the fetal liver, Development, 2012, vol. 139, no. 19, pp. 3521–3530.

    Article  CAS  PubMed  Google Scholar 

  40. Kinoshita, T., Sekiguchi, T., Xu, M.-J., et al., Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 7265–7270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kitajima, K., Kojima, M., Nakajima, K., et al., Definitive but not primitive hematopoiesis is impaired in jumonji mutant mice, Blood, 1999, vol. 93, no. 1, pp. 87–95.

    CAS  PubMed  Google Scholar 

  42. Kumaravelu, P., Hook, L., Morrison, A.M., et al., Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonization of the mouse embryonic liver, Development, 2002, vol. 129, no. 21, pp. 4891–4899.

    CAS  Google Scholar 

  43. Lancrin, C., Sroczynska, P., Stephenson, C., et al., The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage, Nature, 2009, vol. 457, no. 723, pp. 892–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liakhovitskaia, A., Gribi, R., Stamateris, E., et al., Restoration of Runx1 expression in the Tie2 cell compartment rescues definitive hematopoietic stem cells and extends life of Runx1 knockout animals until birth, Stem Cells, 2009, vol. 27, no. 7, pp. 1616–1624.

    Article  CAS  Google Scholar 

  45. Liakhovitskaia, A., Rybtsov, S., Smith, T., et al., Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this, Development, 2014, vol. 141, no. 17, pp. 3319–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, C.-P. and Auerbach, R., In vitro development of murine T cells from prethymic and preliver embryonic yolk sac hematopoietic stem cells, Development, 1991, vol. 113, pp. 1315–1323.

    CAS  PubMed  Google Scholar 

  47. Lux, C.T. and Yoder, M.C., Novel methods for determining hematopoietic stem and progenitor cell emergence in the murine yolk sac, Int. J. Dev. Biol., 2010, vol. 54, nos. 6–7, pp. 1003–1009. https://doi.org/10.1387/ijdb.103118cl

  48. Lux, C.T., Yoshimoto, M., McGrath, K., et al., All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac, Blood, 2008, vol. 111, no. 7, pp. 3435–3438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Medvinsky, A. and Dzierzak, E., Definitive hematopoiesis is autonomously initiated by the AGM region, Cell, 1996, vol. 86, no. 6, pp. 897–906.

    Article  CAS  Google Scholar 

  50. Medvinsky, A., Rybtsov, S., and Taoudi, S., Embryonic origin of the adult hematopoietic system: advances and questions, Development, 2011, vol. 138, no. 6, pp. 1017–31.

    Article  CAS  Google Scholar 

  51. Migliaccio, G., Migliaccio, A.R., Petti, S., et al., Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac—liver transition, J. Clin. Invest., 1986, vol. 78, no. 1, pp. 51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moore, M.A.S., Ontogeny of the hematopoietic system, Handb. Stem Cells, 2004, vol. 2, pp. 159–170.

    Article  CAS  Google Scholar 

  53. Morel, F., Galy, A., Chen, B., and Szilvassy, S.J., Equal distribution of competitive long-term repopulating stem cells in the CD34+ and CD34 fractions of Thy-1low–Lin–/lowSca-1+ bone marrow cells, Exp. Hematol., 1998, vol. 26, no. 5, pp. 440–448.

    CAS  PubMed  Google Scholar 

  54. Nakano, H., Nakano, H., Liu, X., et al., Hemogenic endocardium contributes to transient definitive hematopoiesis, Nat Commun., 2013, vol. 4, p. 1564. https://doi.org/10.1038/ncomms2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. North, T., Gu, T.L., Stacy, T., et al., Cbfa2 is required for the formation of intra-aortic hematopoietic clusters, Development, 1999, vol. 126, no. 11, pp. 2563–2575.

    CAS  PubMed  Google Scholar 

  56. Oberlin, E., Tavian, M., Blazsek, I., and Péault, B., Blood-forming potential of vascular endothelium in the human embryo, Development, 2002, vol. 129, no. 17, pp. 4147–4157.

    CAS  PubMed  Google Scholar 

  57. Oberlin, E., Fleury, M., Clay, D., et al., VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver, Blood, 2010, vol. 116, no. 22, pp. 4444–4455.

    Article  CAS  PubMed  Google Scholar 

  58. Osawa, M., Nakamura, K., Nishi, N., et al., In vivo self-renewal of c-Kit+Sca-1+Linlow/– hemopoietic stem cells, J. Immunol., 1996, vol. 156, no. 9, pp. 3207–3214.

    CAS  PubMed  Google Scholar 

  59. Ottersbach, K. and Dzierzak, E., The murine placenta contains hematopoietic stem cells within the vascular labyrinth region, Dev. Cell, 2005, vol. 8, no. 3, pp. 377–387.

    Article  CAS  Google Scholar 

  60. Padrón-Barthe, L., Temiño, S., Villa del Campo, C., et al., Clonal analysis identifies hemogenic endothelium as the source of the blood-endothelial common lineage in the mouse embryo, Blood, 2014, vol. 124, no. 16, pp. 2523–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Palacios, R. and Imhof, B., At day 8–8.5 of mouse development the yolk sac, not the embryo proper, has lymphoid precursor potential in vivo and in vitro, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, no. 14, pp. 6581–6585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Palis, J., Robertson, S., Kennedy, M., et al., Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse, Development, 1999, vol. 126, no. 22, pp. 5073–5084.

    CAS  Google Scholar 

  63. Palis, J., Chan, R.J., Koniski, A., et al., Spatial and temporal emergence of high proliferative potential hematopoietic precursors during murine embryogenesis, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 8, pp. 4528–4533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Potts, K.S., Sargeant, T.J., Markham, J.F., et al., A lineage of diploid platelet-forming cells precedes polyploid megakaryocyte formation in the mouse embryo, Blood, 2014, vol. 124, no. 17, pp. 2725–2729.

    Article  CAS  PubMed  Google Scholar 

  65. Rampon, C. and Huber, Ph., Multilineage hematopoietic progenitor activity generated autonomously in the mouse yolk sac: analysis using angiogenesis-defective embryos, Int. J. Dev. Biol., 2003, vol. 47, pp. 273–280.

    CAS  PubMed  Google Scholar 

  66. Rhodes, K.E., Gekas, C., Wang, Y., et al., The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation, Cell Stem Cell, 2008, vol. 2, no. 3, pp. 2522–2563.

    Article  CAS  Google Scholar 

  67. Richard, C., Drevon, C., Canto, P.Y., et al., Endothelio-mesenchymal interaction controls runx1 expression and modulates the notch pathway to initiate aortic hematopoiesis, Dev. Cell, 2013, vol. 24, no. 6, pp. 600–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Robin, C., Ottersbach, K., Durand, C., et al., An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells, Dev. Cell, 2006, vol. 11, no. 2, pp. 171–180.

    Article  CAS  Google Scholar 

  69. Robin, C., Bollerot, K., Mendes, S., et al., Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development, Cell Stem Cell, 2009, vol. 5, no. 4, pp. 385–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rybtsov, S., Sobiesiak, M., Taoudi, S., et al., Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region, J. Exp. Med., 2011, vol. 208, no. 6, pp. 1305–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rybtsov, S., Batsivari, A., Bilotkach, K., et al., Tracing the origin of the HSC hierarchy reveals an SCF-dependent, IL-3-independent CD43 embryonic precursor, Stem Cell Rep., 2014, vol. 3, no. 3, pp. 489–501.

    Article  CAS  Google Scholar 

  72. Rybtsov, S., Ivanovs, A., Zhao, S., and Medvinsky, A., Concealed expansion of immature precursors underpins acute burst of adult HSC activity in fetal liver, Development, 2016, vol. 143, no. 8, pp. 1284–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Samokhvalov, I.M., Samokhvalova, N.I., and Nishikawa, S., Cell tracing shows the contribution of the yolk sac to adult haematopoiesis, Nature, 2007, vol. 446, no. 7139, pp. 1056–1061.

    Article  CAS  Google Scholar 

  74. Sasaki, K. and Sonoda, Y., Histometrical and three-dimensional analyses of liver hematopoiesis in the mouse embry, Arch. Histol. Cytol., 2000, vol. 63, no. 2, pp. 137–146.

    Article  CAS  PubMed  Google Scholar 

  75. Sasaki, T., Mizuochi, C., Horio, Y., et al., Regulation of hematopoietic cell clusters in the placental niche through SCF/Kit signaling in embryonic mouse, Development, 2010, vol. 137, no. 23, pp. 3941–3952.

    Article  CAS  PubMed  Google Scholar 

  76. Sicurella, C., Freeman, R, Micallef, S., et al., Defective stem cell factor expression in c-myb null fetal liver stroma, Blood Cells, Mol., Dis., 2001, vol. 27, no. 2, pp. 470–478.

    Article  CAS  Google Scholar 

  77. Sinka, L., Biasch, K., Khazaal, I., et al., Angiotensin-converting enzyme (CD143) specifies emerging lympho-hematopoietic progenitors in the human embryo, Blood, 2012, vol. 119, no. 16, pp. 3712–3723.

    Article  CAS  PubMed  Google Scholar 

  78. Sonoda, T., Hayashi, C., and Kitamura, Y., Presence of mast cell precursors in the yolk sac of mice, Dev. Biol., 1983, vol. 97, no. 1, pp. 89–94.

    Article  CAS  PubMed  Google Scholar 

  79. Souilhol, C., Gonneau, C., Lendinez, J.G., et al., Inductive interactions mediated by interplay of asymmetric signaling underlie development of adult haematopoietic stem cells, Nat. Commun., 2016, vol. 7, no. 10784. https://doi.org/10.1038/ncomms10784

  80. Sugiyama, D., Inoue-Yokoo, T., Fraser, S.T., et al., Embryonic regulation of the mouse hematopoietic niche, Sci. World J., 2011, vol. 11, pp. 1770–1780.

    Article  CAS  Google Scholar 

  81. Tanaka, Y., Sanchez, V., Takata, N., et al., Circulation-independent differentiation pathway from extraembryonic mesoderm toward hematopoietic stem cells via hemogenic angioblasts, Cell Rep., 2014, vol. 8, no. 1, pp. 31–39.

    Article  CAS  PubMed  Google Scholar 

  82. Taoudi, S. and Medvinsky, A., Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 22, pp. 9399–9403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Taoudi, S., Morrison, A.M., Inoue, H., et al., Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the fetal liver, Development, 2005, vol. 132, no. 18, pp. 4179–4191.

    Article  CAS  Google Scholar 

  84. Tavian, M. and Péault, B., The changing cellular environments of hematopoiesis in human development in utero, Exp. Hematol., 2005, vol. 33, no. 9, pp. 1062–1069.

    Article  PubMed  Google Scholar 

  85. Tavian, M., Hallais, M.-F., and Péault, B., Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo, Development, 1999, vol. 126, no. 4, pp. 793–803.

    CAS  PubMed  Google Scholar 

  86. Tavian, M., Biasch, K., Sinka, L., et al., Embryonic origin of human hematopoiesis, Int. J. Dev. Biol., 2010, vol. 54, nos. 6–7, pp. 1061–1065.

  87. Toles J.F., Chui, D.H., Belbeck, L.W., et al., Hemopoietic stem cells in murine embryonic yolk sac and peripheral blood, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, no. 19, pp. 7456–7459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Uchida, N., Fujisaki, T., Eaves, A.C., and Eaves, C.J., Transplantable hematopoietic stem cells in human fetal liver have a CD34+ side population (SP) phenotype, J. Clin. Invest., 2001, vol. 108, no. 7, pp. 1071–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yoder, M.C., Hiatt, K., and Mukherjee, P., In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 13, pp. 6776–6780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yokomizo, T. and Dzierzak, E., Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos, Development, 2010, vol. 137, no. 21, pp. 3651–3661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zeigler, B.M., Sugiyama, D., Chen, M., et al., The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential, Development, 2006, vol. 133, no. 21, pp. 4183–4192.

    Article  CAS  Google Scholar 

  92. Zhou, F., Li, X., Wang, W., et al., Tracing haematopoietic stem cell formation at single-cell resolution, Nature, 2016, vol. 533, no. 7604, pp. 4874–4892.

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed in the framework of the theme of the state program of basic scientific research of the Institute of Developemental Biology, Russian Academy of Sciences, no. 0108-20186-00045.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Domaratskaya or O. V. Payushina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Shipounova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domaratskaya, E.I., Payushina, O.V. Origin of Hematopoietic Stem Cells in Embryonic Development. Biol Bull Rev 9, 191–202 (2019). https://doi.org/10.1134/S2079086419030034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419030034

Navigation