Skip to main content
Log in

A numerical verification method for two-coupled elliptic partial differential equations

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A numerical verification, method of steady state solutions for a system of reaction-diffusion equations is described. Using a decoupling technique, the system is reduced to a single nonlinear equation and a computer-assisted method for second-order elliptic boundary value problems based on the infinite dimensional fixed-point theorem can be applied. Some numerical examples confirm the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Alefeld and G. Mayer, The Cholesky method for interval data. Linear Algebra Appl.,194 (1993), 161–182.

    Article  MATH  MathSciNet  Google Scholar 

  2. D.G. de Figueiredo and E. Mitidieri, A maximum principle for an elliptic system and applications to semilinear problems. SIAM J. Math. Anal.,17 (1986), 836–849.

    Article  MATH  MathSciNet  Google Scholar 

  3. R.B. Kearfott and V. Kreinovich, Applications of Interval Computations. Kluwer Academic Publishers, Netherland, 1996, http://interval.usl.edu/kearfott.html.

    MATH  Google Scholar 

  4. A.C. Lazer and P.J. McKenna, On steady state solutions, of a system of reaction-diffusion equations from biology. Nonlinear Analysis, Theory, Methods & Applications,6 (1982), 523–530.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.T. Nakao, A numerical verification method for the existence of weak solutions for nonlinear boundary value problems. J. Math. Anal. Appl.,164 (1992), 489–507.

    Article  MATH  MathSciNet  Google Scholar 

  6. M.T. Nakao, Solving nonlinear elliptic problems with result verification using anH −1 type residual iteration. Computing Suppl.,9 (1993), 161–173.

    Google Scholar 

  7. M.T. Nakao, Numerical verification methods for solutions of ordinary and partial differential equations. Numer. Funct. Anal. and Optimiz.,22 (2001), 321–356.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.T. Nakao and Y. Watanabe, An efficient approach to the numerical verification for solutions of elliptic differential equations. Numer. Algor.,37 (2004), 311–323.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Plum, ExplicitH 2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems. J. Math. Anal. Appl.,165 (1992), 36–61.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Plum, Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems. J. Comput. Appl. Math.,60 (1995), 187–200.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Reinecke and G. Sweers, Solutions with internal jump for an autonomous elliptic system of FitzHugh-Nagumo type. Math. Nachr.,251 (2003), 64–87.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Rothe, Global existence of branches of stationary solutions for a system of reaction diffusion equations from biology. Nonlinear Analysis, Theory, Methods & Applications,5 (1981), 487–498.

    Article  MATH  MathSciNet  Google Scholar 

  13. S.M. Rump, On the solution of interval linear systems. Computing,47 (1992), 337–353.

    Article  MATH  MathSciNet  Google Scholar 

  14. S.M. Rump, Verification methods for dense and sparse systems of equations. Topics in Validated Computations—Studies in Computational Mathematics, J. Herzberger (ed.), Elsevier, Amsterdam, 1994, 63–136.

    Google Scholar 

  15. J. Smoller and A. Wasserman, On the monotonicity of the time-map. J. Differential Equations,77 (1989), 287–303.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Sweers and W.C. Troy, On the bifurcation curve for an elliptic system of FitzHugh-Nagumo type. Physica D,177 (2003), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Toyonaga, M.T. Nakao and Y. Watanabe, Verified numerical computations for multiple and nearly multiple eigenvalues of elliptic operators. J. Comput. Appl. Math.,147 (2002), 175–190.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Watanabe and M.T. Nakao, Numerical verifications of solutions for nonlinear elliptic equations. Japan. J. Indust. Appl. Math.,10 (1993), 165–178.

    Article  MATH  MathSciNet  Google Scholar 

  19. Y. Watanabe, M. Plum and M.T. Nakao, A computer-assisted instability proof for the Orr-Sommerfeld problem with Poiseuille flow. Z. angew. Math. Mech.,89 (2009), 5–18.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Zuluaga, On a nonlinear elliptic system: resonance and bifurcation cases. Comment. Math. Univ. Carolinae,40 (1999), 701–711.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Watanabe.

About this article

Cite this article

Watanabe, Y. A numerical verification method for two-coupled elliptic partial differential equations. Japan J. Indust. Appl. Math. 26, 233–247 (2009). https://doi.org/10.1007/BF03186533

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03186533

Key words

Navigation