Skip to main content
Log in

Evaluation of an automated EA-IRMS method for total carbon analysis of atmospheric aerosol at HEKAL

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Comprehensive atmospheric studies have demonstrated that carbonaceous particles are one of the main components of atmospheric aerosols over Europe. The aim of our study was to establish an automated elemental analyser interfaced to a stable isotope mass spectrometer (EA-IRMS) method at the Hertelendi Laboratory of Environmental Studies (HEKAL), as a suitable method of quantification of total carbon mass in individual PM2.5 aerosol samples. Total carbon (TC) mass and simultaneous stable isotopic ratios were determined for both test standard and genuine aerosol samples. Finally, the results were compared to the ones obtained independently by an alternative sealed tube combustion method developed previously at HEKAL. The TC recovery tests of standard material prepared by the sealed tube method confirmed at least a carbon recovery yield of 92% for a broad range of carbon mass (100–2000 μg). The stable isotopic results confirmed that sealed tube method is reproducible and suitable to be used as a reference to verify our new EA-IRMS method. The EA-IRMS TC measurements of genuine aerosols gave on average 3% higher carbon recovery yield, relative to the uncorrected results of the sealed tube method. The comparison of the stable isotopic results by the two methods for aerosols also showed minimal differences. Consequently, the possibility of simultaneous TC and stable isotopic analyses makes the EA-IRMS method a very attractive alternative for continuous measurement of aerosols, with an accuracy and reliability similar to other commercial devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cachier, H., Brémond, M.P., Buat-Ménard, P.: Determination of atmospheric soot carbon with a simple thermal method. Tellus. 41B(3), 379–390 (1989)

    Article  Google Scholar 

  • Chow, J.C., Watson, J.G.: PM2.5 carbonate concentrations at regionally representative Interagency Monitoring of Protected Visual Environment sites. Jour. of Geophys. Res. 107, 8344 (2002). doi:10.1029/2001JD000574

    Article  Google Scholar 

  • Filep, Á., Drinovec, L., Palágyi, A., Manczinger, L., Vágvölgyi, C., Bozóki, Z., Hitzenberger, R., Szabó, G.: Source specific Cyto- and genotoxicity of atmospheric aerosol samples. Aerosol and Air Quality Res. 15(6), 2325–2331 (2015)

    Google Scholar 

  • Finnigan ConFlo III Operating Manual. Thermo Electron Corporation. Published by Product Marketing, Thermo Electron Corporation, Bremen, Germany. 6.6 paragraph 6 (19)-6 (21) (2003).

  • Gelencsér, A., Hoffer, A., Molnár, A., Kriváncsy, Z., Kiss, G., Mészáros, E.: Thermal behaviour of carbonaceous aerosol from a continental background site. Atmos. Environ. 34, 823–831 (2000)

    Article  Google Scholar 

  • Górka, M., Rybicki, M., Simoneit, B.R.T., Marynovski, L.: Determination of multiple organic matter sources in aerosol PM10 from Wroclaw, Poland using molecular and stable carbon isotope compositions. Atmos. Environ. 89, 739–748 (2014)

    Article  Google Scholar 

  • Green, D.C., Fuller, G.W., Baker, T.: Development and validation of the volatile correction model for PM10- an empirical method for adjusting TEOM measurements for their loss of volatile particulate matter. Atmos. Environ. 43, 2132–2141 (2009)

    Article  Google Scholar 

  • Hansen, A.D.A., Rosen, H., Novakov, T.: The aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Tot. Environ. 36, 191–196 (1984)

    Article  Google Scholar 

  • Janovics, R.: Development of radiocarbon-based measuring methods and their application for nuclear environmental monitoring. PhD thesis. University of Debrecen Press https://dea.lib.unideb.hu in Hungarian (2015).

  • Kawamura, K., Ikushima, K.: Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 27, 2227–2235 (1993)

    Article  Google Scholar 

  • Krivácsy, Z., Sávári, Z., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S.G.: Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmos. Environ. 35, 6231–6244 (2001)

    Article  Google Scholar 

  • Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., Horak Jr., F., Puybonnieux-Texier, V., Quénel, P., Schneider, J., Seethaler, R., Vergnaud, J.C., Sommer, H.: Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet. 356, 795–801 (2000)

    Article  Google Scholar 

  • Lavanchy, V.M.H., Gäggeler, H.W., Nyeki, S., Baltensperger, U.: Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch, Atmos. Environment. 33(17), 2759–2769 (1999)

    Google Scholar 

  • Mader, B.T., Schauer, J.J., Seinfeld, J.H., Flagan, R.C., Yu, J.Z., Yang, H., Lim, H.J., Turpin, B.J., Deminter, J.T., Heidemann, G., Bae, M.S., Quinn, P., Bates, T., Eatough, D.J., Huebert, B.J., Bertram, T., Howell, S.: Sampling methods used for the collection of particle-phase organic and elemental carbon during ACE-Asia, Atmos. Environment. 37(11), 1435–1449 (2003)

    Google Scholar 

  • Major, I., Furu, E., Haszpra, L., Kertész, Z., Molnár, M.: One-year-long continuous and synchronous data set of fossil carbon in atmospheric PM2.5 and carbon-dioxide in Debrecen, Hungary. Radiocarbon. 57(5), 991–1002 (2015)

    Article  Google Scholar 

  • Mertes, S., Dippel, B., Schwarzenböck, A.: Quantification of graphitic carbon in atmospheric aerosol particles by Raman spectroscopy and first application for the determination of mass absorption efficiencies. J. Aerosol Sci. 35(3), 347–361 (2004)

    Article  Google Scholar 

  • Novakov, T., Hegg, D.A., Hobbs, P.V.: Airborne measurements of carbonaceous aerosols on the East Coast of the United States. J. Geophys. Res.-Atmos. 102, 30023–30030 (1997)

    Article  Google Scholar 

  • Polgári, M., Németh, T., Pál-Molnár, E., Futó, I., Vigh, T., Mojzsis, S.J.: Correlated chemostratigraphy of Mn-carbonate microbialites (Úrkút, Hungary). Gondwana Res. 29, 278–289 (2016)

    Article  Google Scholar 

  • Putaud, J.P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H.C., Harrison, R.M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A.M., Kasper-Giebl, A., Kiss, G., Kousam, A., Kuhlbusch, T.A.J., Löschau, G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A., Raes, F.: A European aerosol phenomenology 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 44, 1308–1320 (2010)

    Article  Google Scholar 

  • Ramanathan, V., Ramana, M.V., Roberts, G., Kim, D., Corrigan, C., Chung, C., Winker, D.: Warming trends in Asia amplified by brown cloud solar absorption. Nature. 448, 575–578 (2007)

    Article  Google Scholar 

  • Schmid, H., Laskus, L., Abraham, H.J., Baltensperger, U., Lavanchy, V., Bizjak, M., Burba, P., Cachier, H., Crow, D., Chow, J., Gnauk, T., Even, A., ten Brink, H.M., Giesen, K.P., Hitzenberger, R., Hueglin, E., Maenhaut, W., Pio, C., Carvalho, A., Putaud, J.P., Toom-Sauntry, D., Puxbaum, H.: Results of the "carbon conference" international aerosol carbon round robin test stage I, Atmos. Environment. 35(12), 2111–2121 (2001)

    Google Scholar 

  • Szidat, S., Ruff, M., Perron, N., Wacker, L., Synal, H.A., Hallquist, M., Shannigrahi, A.S., Yttri, K.E., Dye, C., Simpson, D.: Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg. Sweden. Atmos. Chem. and Phys. 9, 1521–1535 (2009)

  • Tørseth, K., Aas, W., Breivik, K., Fjæraa, A.M., Fiebig, M., Hjellbrekke, A.G., Lund Myhre, C., Solberg, S., Yttri, K.E.: Introduction to the European monitoring and evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. Discuss. 12, 5447–5481 (2012)

    Article  Google Scholar 

  • Utry, N., Ajtai, T., Pintér, M., Tombácz, M., Illés, E., Bozóki, Z., Szabó, G.: Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer. Atmos. Measur. Tech. Dis. 7, 9025–9046 (2014)

    Article  Google Scholar 

  • Vető, I., Futó, I., Horváth, I., Szántó, Z.: Late and deep fermentative methanogenesis as reflected in the H-C-O-S isotopy of the methane-water system in deep aquifers of the Pannonian Basin (SE Hungary). Org. Geochem. 35, 713–723 (2004)

    Article  Google Scholar 

  • Vodila, G., Placsu, L., Futó, I., Szántó, Z.: A 9-year record of stable isotope ratios of precipitation in eastern Hungary: implications on isotope hydrology and regional palaeoclimatology. Journ. Hydro. 400, 144–153 (2011)

    Article  Google Scholar 

  • Kertész, Z., Szoboszlai, Z., Angyal, A., Dobos, E., Borbély, K.I.: Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment. Nucl. Inst. And Meth. B. 268, 1924–1928 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 ‘National Excellence Program and the project of GINOP-2.3.2.-15-2016-00009 ‘ICER’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Major.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Major, I., Gyökös, B., Túri, M. et al. Evaluation of an automated EA-IRMS method for total carbon analysis of atmospheric aerosol at HEKAL. J Atmos Chem 75, 85–96 (2018). https://doi.org/10.1007/s10874-017-9363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-017-9363-y

Keywords

Navigation