Skip to main content
Log in

On the maximal regularity for perturbed autonomous and non-autonomous evolution equations

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to use ideas from systems theory to investigate the concept of maximal \(L^p\)-regularity for some perturbed autonomous and non-autonomous evolution equations in Banach spaces. We mainly consider two classes of perturbations: Miyadera–Voigt perturbations and Desch–Schappacher perturbations. We introduce conditions for which the maximal \(L^p\)-regularity can be preserved under these kinds of perturbations. We illustrate our results with some applications, in particular with an example of PDE in non-reflexive spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Adler, M. Bombieri, and K.-J. Engel. Perturbation of analytic semigroups and applications to partial differential equations, J. Evol. Equ. 17:1183–1208, 2017.

    Article  MathSciNet  Google Scholar 

  2. H. Amann. Linear and Quasilinear Parabolic Problems. Vol. I. Birkhäuser, Basel XX, 1995.

    Book  Google Scholar 

  3. H. Amann, M. Hieber and G. Simonett. Bounded \(H^\infty \)-calculus for elliptic operators. Differ. Int. Equ., 7(3-4):613–653, 1994.

    MathSciNet  MATH  Google Scholar 

  4. W. Arendt, R. Chill, S. Fornaro and C. Poupaud. \(L^p\)-maximal regularity for nonautonomous evolution equations. J. Differ. Equ., 237:1–26, 2007.

    Article  Google Scholar 

  5. P. Cannarsa and V. Vespri. On maximal Lp regularity for the abstract Cauchy problem, Boll. Un. Mat. Ital. B, 5(6):165–175, 1986.

  6. C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations. American Mathematical Society., Providence, RI, 1999.

    Book  Google Scholar 

  7. T. Coulhon and D. Lamberton, Régularité Lp pour les équations d’évolution, Séminaire d’Analyse Fonctionnelle 1984/1985, Publ. Math. Univ. Paris VII, 26:155–165, 1986.

    Google Scholar 

  8. L. De Simon, Un’ applicazione della theoria degli integrali singolariallo studio delle equazioni differenziali lineare astratte del primoordine. Rend. Sem. Mat., Univ. Padova, 99:205–223, 1964.

  9. R. Denk, M. Hieber, and J. Prüss, R-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type. Memoirs Am. Math. Soc., 166, Amer. Math. Soc., Providence, R.I., 2003.

  10. G. Dore, Maximal regularity in Lp spaces for an abstract Cauchy problem. Adv. Differ. Equ. 5(1-3):293–322, 2000.

    MATH  Google Scholar 

  11. K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations. Springer, New York, 2000.

    MATH  Google Scholar 

  12. G. Greiner. Perturbing the boundary conditions of a generator. Houston J. Math., 18:405–425, 2001.

    Google Scholar 

  13. S. Hadd. An evolution equation approach to nonautonomous linear systems with state, input, and output delays. SIAM J Control Optim. 45:246–272, 2006

    Article  MathSciNet  Google Scholar 

  14. S. Hadd. Unbounded perturbations of \(C_0\)-semigroups on Banach spaces and applications. Semigroup Forum, 70:451–465, 2005.

    Article  MathSciNet  Google Scholar 

  15. S. Hadd and A. Idrissi, On the admissibility of observation for perturbed \(C_0\)–semigroups on Banach spaces, Syst. Control Lett. 55(1):1–7, 2006.

    Article  Google Scholar 

  16. S. Hadd, R. Manzo and A. Rhandi. Unbounded perturbations of the generator domain. Discret. Cont. Dyn. Syst. A, 35(2):703–723, 2015.

    Article  MathSciNet  Google Scholar 

  17. B.H. Haak, M. Haase and P.C. Kunstmann. Perturbation, interpolation and maximal regularity. Adv. Differ. Equ., 11(2):201–240, 2006.

    MathSciNet  MATH  Google Scholar 

  18. M. Hieber and S. Monniaux. Pseudo-differential operators and maximal regularity results for non-autonomous parabolic equations. Proc. Am. Math. Soc. 128:1047–1053, 2000.

    Article  MathSciNet  Google Scholar 

  19. P. C. Kunstmann and L. Weis. Maximal \(L_p\)-regularity for parabolic equations. Fourier multiplier theorems and \(H^\infty \) functional calculus. In finctional analytic methodes for evolution equations (Levico terme 2001), Lecture notes in Math., Springer, Berlin, 1855:65–312, 2004.

    Chapter  Google Scholar 

  20. P. C. Kunstmann and L. Weis. Perturbation theorems for maximal Lp-regularity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30(4):415–4435, 2001.

  21. C. Le Merdy. The Weiss conjecture for bounded analytic semigroups. J. Lond. Math. Soc. 67(3):715–738, 2003.

    Article  MathSciNet  Google Scholar 

  22. F. Maragh, H. Bounit, A. Fadili and H. Hammouri. On the admissible control operators for linear and bilinear systems and the Favard spaces. Bull. Belgian Math. Soc. Simon Stevin, 21(4):711–732, 2014.

    Article  MathSciNet  Google Scholar 

  23. I. Miyadera, On perturbation theory for semigroups of operators. Tohoku Math. J. 18, pp. 299–310, 1966.

    Article  MathSciNet  Google Scholar 

  24. T. Ogawa and S. Shimizu. End-point maximal regularity and its application to two-dimensional Keller–Segel system. Math. Z. 264(3):601–628, 2010.

    Article  MathSciNet  Google Scholar 

  25. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Berlin, 1983.

    Book  Google Scholar 

  26. J. Prüss and H. Sohr. Imaginary powers of elliptic second order differential operators in \(L^p\) -spaces. Hiroshima Math. J. 23(1):161–192, 1993.

    Article  MathSciNet  Google Scholar 

  27. P. Portal and Ž. Štrkalj. Pseudodifferential operators on Bochner spaces and an application. Math. Z. 253:805–819, 2006.

    Article  MathSciNet  Google Scholar 

  28. J. Prüss and R. Schnaubelt. Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time. J. Math. Anal. Appl. 256:405-430, 2001.

    Article  MathSciNet  Google Scholar 

  29. M. Renardy and R. C. Rogers, An introduction to partial differential equations, 2nd ed., Texts in Applied Mathematics, vol. 13, Springer-Verlag, New York, 2004.

  30. D. Salamon. Infinite-dimensional linear system with unbounded control and observation: a functional analytic approach. Trans. Am. Math. Soc., 300(2):383–431, 1987.

    MathSciNet  MATH  Google Scholar 

  31. R. Schnaubelt, Well-posedness and asymptotic behavior of non-autonomous linear evolution equations. Evolution Equations. Semigroups and Functional Analysis (A. Lorenzi and B. Ruf eds). Basel: Birkhäuser, 50:311–338, 2002.

    Chapter  Google Scholar 

  32. R. Schnaubelt , Feedbacks for nonautonomous regular linear systems, SIAM J. Control Optim., 41(4):1141–1165, 2002.

    Article  MathSciNet  Google Scholar 

  33. O.J. Staffans, Well-Posed Linear Systems, vol. 103 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2005.

  34. M. Tucsnak and G. Weiss. Observation and Control for Operator Semigroups, Birkhäuser, Basel, 2009.

    Book  Google Scholar 

  35. J. Voigt. On the perturbation theory for strongly continuous semigroups. Math. Ann. 229(2):163–171, 1977.

    Article  MathSciNet  Google Scholar 

  36. L. Weis. A new approach to maximal \(L_p\)-regularity. Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), 195–214, Lecture Notes in Pure and Appl. Math., 215, Dekker, New York, 2001.

    Chapter  Google Scholar 

  37. L. Weis. Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Math. Ann., 319:735–758, 2001.

    Article  MathSciNet  Google Scholar 

  38. G. Weiss. Admissible observation operators for linear semigroups, Israel J. Math. 65:17–43, 1989.

    Article  MathSciNet  Google Scholar 

  39. G. Weiss. Admissibility of unbounded control operators, SIAM J. Control Optim. 27:527–545, 1989.

    Article  MathSciNet  Google Scholar 

  40. G. Weiss. Regular linear systems with feedback. Mathematics of Control. Signals Syst., 7:23–57, 1994.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Driouich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amansag, A., Bounit, H., Driouich, A. et al. On the maximal regularity for perturbed autonomous and non-autonomous evolution equations. J. Evol. Equ. 20, 165–190 (2020). https://doi.org/10.1007/s00028-019-00514-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00514-8

Keywords

Navigation