Skip to main content
Log in

Casein-Derived Peptides with Antihypertensive Potential: Production, Identification and Assessment of Complex Formation with Angiotensin I-Converting Enzyme (ACE) through Molecular Docking Studies

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Hypertension is nowadays one of the major world concerns in public health. Several food proteins, among which caseins, can be substrates for generating peptides with antihypertensive potential. With the increasingly evolution of computational tools, in silico molecular modeling have gained prominence in studies of protein-ligand complexes in different research fields, such as pharmaceutics and biochemical engineering. However, the application of such methodologies in food-related research can be considered still embryonic. Thus, the central aim of the present work was to apply molecular modelling in order to elucidate the molecular bases of the anti-hypertensive potential of milk caseins-derived peptides. Firstly, hydrolysates obtained from a controlled trypsinolysis of caseins were fractioned according to their molecular weight, by ultrafiltration and RP-HPLC. The obtained fractions were evaluated with regard to their in vitro inhibitory angiotensin-converting enzyme activity (%IACE). Six chromatographic fractions were identified, and three of them displayed high ACE-inhibition (F1: 80.68%; F2: 79.00%; and F4: 62.44%). Finally, intermolecular interactions networks in complexes formed between ACE and the identified peptides were assessed through in silico molecular docking. At the molecular level, a correlation between in vitro and in silico results was found: the peptides FFVAPFPEVFGK (F6), FALPQYLK (F2, F4) and ALNEINQFYQK (F1) presented the lowest biding energies and interacted by specific H-bonds, electrostatic and hydrophobic interactions formed within ACE active site S1 residues (Ala354, Glu384, and Tyr 523) and the Zn2+ coordinated residues (His383, His387, and Glu411). The fraction F3, despite its low total peptide concentration, presented a moderate inhibitory activity for ACE (49.2%), likely due to H-bonds between HQGLPQEVLNENLLR and the active site S1 residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization (WHO): http://www.fao.org/3/AC911E/AC911E00.htm. Accessed 25 Jan 2019

  2. J. Torruco-Uco, L. Chel-Guerrerob, A. Martínez-Ayala, G. Dávila-Ortíz, D. Betancur-Ancona, LWT - food Sci. Technol. 42, 1597 (2009)

    CAS  Google Scholar 

  3. Z.F. Bhat, S. Kumar, H.F. Bhat, Crit. Rev. Food Sci. Nutr. 57, 566 (2015)

    Google Scholar 

  4. M.R. De Oliveira, T.J. Silva, E. Barros, V.M. Guimarães, M.C. Baracat-Pereira, M.R. Eller, J.S. dos Coimbra, E.B. De Oliveira, Appl. Biochem. Biotechnol. 185, 884 (2018)

    PubMed  Google Scholar 

  5. E.C. de Souza Jr, J.S. dos Coimbra, E.B. de Oliveira, R.C.F. Bonomo, J. Chromatogr. B 973, 84 (2014)

    Google Scholar 

  6. F.G. Amorim, L.B. Coitinho, A.T. Dias, A.G.F. Friques, B.L. Monteiro, L.C.D. de Rezende, T.M.C. Pereira, B.P. Campagnaro, E. De Pauw, E.C. Vasquez, L. Quinton, Food Chem. 282, 109 (2019)

    CAS  PubMed  Google Scholar 

  7. M. Tu, C. Wang, C. Chen, R. Zhang, H. Liu, W. Lu, Food Chem. 256, 98 (2018)

    CAS  PubMed  Google Scholar 

  8. R.J.S. Castro, H.H. Sato, Food Res. Int. 74, 185 (2015)

    PubMed  Google Scholar 

  9. X. Lan, D. Liao, S. Wu, F. Wang, J. Sun, Z. Tong, Food Chem. 182, 136 (2015)

    CAS  PubMed  Google Scholar 

  10. O. Abdelhedi, R. Nasri, L. Mora, M. Jridi, F. Toldra, M. Nasri, Food Chem. 239, 453 (2018)

    CAS  PubMed  Google Scholar 

  11. M. Mirzaei, S. Mirdamadi, R.M. Ehsani, J. Food Drug Anal. 26, 696 (2018)

    CAS  PubMed  Google Scholar 

  12. A. Shi, H. Liu, L. Liu, H. Hu, Q. Wang, B. Adhikari, PLoS One 9, 23 (2014)

    Google Scholar 

  13. T.M. Menezes, S.M.V. de Almeida, R.O. de Moura, G. Seabra, C.A. de Lima, J.L. Neves, Int. J. Biol. Macromol 122, 289 (2019)

    CAS  PubMed  Google Scholar 

  14. D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Nat. Rev. 3, 935 (2004)

    CAS  Google Scholar 

  15. P. García-mora, M. Martín-martínez, M.A. Bonache, M. Angeles, R. González-múniz, E. Peñas, J. Frias, C. Martinez-villaluenga, Food Chem. 221, 464 (2017)

    PubMed  Google Scholar 

  16. X. Wang, H. Chen, X. Fu, S. Li, J. Wei, LWT - food Sci. Technol. 75, 93 (2017)

    CAS  Google Scholar 

  17. K. Lin, L. Zhang, X. Han, D. Cheng, J. Funct. Foods 32, 266 (2017)

    CAS  Google Scholar 

  18. S.C. Cheison, J. Brand, E. Leeb, U. Kulozik, Agric. Food Chem. 59, 1572 (2011)

    Google Scholar 

  19. G.W. Hofland, M. Van Es, L.A.M. Van Der Wielen, G. Witkamp, Ind. Eng. Chem. Res. 38, 4919 (1999)

    CAS  Google Scholar 

  20. D.W. Cushman, H.S. Cheung, Biochem. Pharmacol. 20, 1637 (1971)

    CAS  PubMed  Google Scholar 

  21. A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold, 74, 5383 (2002)

    Google Scholar 

  22. R. Natesh, S. L. U. Schwager, E. D. Sturrock, and K. R. Acharya, 421, 551 (2003)

    Google Scholar 

  23. J.M. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1–2, 1 (2015)

    Google Scholar 

  24. C. Oostenbrink, A. Villa, A.E. Mark, W.F. Van Gunsteren, J. Comput. Chem. 25, 1656 (2004)

    CAS  PubMed  Google Scholar 

  25. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)

    CAS  Google Scholar 

  26. E.B. De Oliveira, C. Humeau, L. Chebil, E.R. Maia, F. Dehez, B. Maigret, M. Ghoul, J.-M. Engasser, J. Mol. Catal. B Enzym. 59, 96 (2009)

    Google Scholar 

  27. M.D. Polêto, M.P. Alves, R. Ligabue-braun, M.R. Eller, A.F. de Carvalho, Food Chem. 286, 309 (2019)

    PubMed  Google Scholar 

  28. O. Trott, A.J. Olson, Wiley Period. 31, 455 (2010)

    CAS  Google Scholar 

  29. E.C. de Souza, J.S.D.R. Coimbra, E.B. de Oliveira, R.C.F. Bonomo, J. Chromatogr, B. Analyt. Technol. Biomed. Life Sci. 973C, 84 (2014)

    Google Scholar 

  30. A. Yamada, T. Sakurai, D. Ochi, E. Mitsuyama, K. Yamauchi, F. Abe, Food Chem. 172, 441 (2015)

    CAS  PubMed  Google Scholar 

  31. R.J. Bazan, J.F. Fletterick, Virology 171, 637 (1989)

    CAS  PubMed  Google Scholar 

  32. T. Aoki, Y. Kako, T. Imamura, J. Dairy Res. 53, 53 (1986)

    CAS  Google Scholar 

  33. J. Kyte, J. Doolittle, Mol. Biol. 157, 105 (1982)

    CAS  Google Scholar 

  34. Q. Wu, J. Jia, H. Yan, J. Du, Z. Gui, Peptides 68, 17 (2015)

    CAS  PubMed  Google Scholar 

  35. A.S. Pina, A.C.A. Roque, J. Mol. Recognit. 22, 162 (2009)

    CAS  PubMed  Google Scholar 

  36. S. Maruyama, H. Mitachi, H. Tanaka, N. Tomizuka, H. Suzuki, Agric. Biol. Chem. 51, 1581 (1987)

    CAS  Google Scholar 

  37. I. López-Expósito, A. Quirós, L. Amigo, I. Recio, Lait 87, 241 (2007)

    Google Scholar 

  38. J. Tauzin, L. Miclo, J. Gaillard, FEBS Lett. 531, 4 (2002)

    Google Scholar 

  39. R.J. Fitzgerald, B.A. Murray, D.J. Walsh, J. Nutr. 134, 980S (2004)

    CAS  PubMed  Google Scholar 

  40. M. Abdel-hamid, J. Otte, C. De Gobba, A. Osman, Int. Dairy J. 66, 91 (2017)

    CAS  Google Scholar 

  41. A.T. Girgih, R. He, R.E. Aluko, J. Agric. Food Chem. 62, 4135 (2014)

    CAS  PubMed  Google Scholar 

  42. P. Li, J. Jia, M. Fang, L. Zhang, M. Guo, J. Xie, Process Biochem. 49, 898 (2014)

    CAS  Google Scholar 

  43. J. Tauzin, L. Miclo, G. Jean-luc, FEBS Lett. 531, 4 (2002)

    Google Scholar 

Download references

Acknowledgements

We are grateful to BIOAGRO-UFV, NuBioMol-UFV and UFV Computational Cluster for providing the facilities for carrying out the experiments, and to Brazilian agencies CAPES, CNPq, FAPEMIG, FINEP, FUNARBE and SisNANO/MCTI, for the financial support. Ms. M.R. Oliveira and Ms. T.J. Silva are especially grateful to CNPq for their scholarships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomás Valente De Oliveira or Eduardo Basílio De Oliveira.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Oliveira, T.V., Polêto, M.D., De Oliveira, M.R. et al. Casein-Derived Peptides with Antihypertensive Potential: Production, Identification and Assessment of Complex Formation with Angiotensin I-Converting Enzyme (ACE) through Molecular Docking Studies. Food Biophysics 15, 162–172 (2020). https://doi.org/10.1007/s11483-019-09616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09616-9

Keywords

Navigation