Skip to main content

Advertisement

Log in

Structures and photoelectrochemical performances of reduced TiO2 NTAs obtained by hydrogen thermal and electrochemical reduction methods

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Reduced TiO2 nanotube arrays were obtained by hydrogen-thermal and electrochemical reduction methods respectively, and the photoelectrochemical performances were studied. Phase structures, elemental compositions, and surficial morphologies were characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) to investigate the structural differences between as-prepared TiO2 NTAs and reduced TiO2 NTAs, including two different reducing products. The photoelectrochemical performances of TiO2 NTAs were found to be enhanced by both two reducing methods. The different mechanisms of hydrogen-thermal reduction and electrochemical reduction were investigated by comparing optical absorption, charge transport, separation efficiency of charge carriers, and surficial reactions during the photoelectrochemical processes. For hydrogen-thermal-reduced TiO2 NTAs, the improved photoelectrochemical performances are induced by high optical absorption and low recombination of charge carries, whereas for electrochemical reduced TiO2 NTAs, the enhanced performances are attributed to low charge transport resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Babu VJ, Vempati S, Uyar T, Ramakrishna S (2015) Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys Chem Chem Phys 17(5):2960–2986

    Article  CAS  Google Scholar 

  2. Li R, Weng Y, Zhou X, Wang X, Mi Y, Chong R, Han H, Li C (2015) Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ Sci 00:1–6

    Google Scholar 

  3. Mohajernia S, Hejazi S, Mazare A, Nguyen NT, Schmuki P (2017) Photoelectrochemical H2 generation from suboxide TiO2 nanotubes: visible light absorption versus conductivity. Chemistry 23(50):12406–12411

    Article  CAS  Google Scholar 

  4. Aritonang AB, Surahman H, Krisnandi YK, Gunlazuardi J (2017) Photo-electro-catalytic performance of highly ordered nitrogen doped TiO2 nanotubes array photoanode. Mater Sci Eng 172:1757–1767

    Google Scholar 

  5. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Nano Lett 91(15):152111–152114

    Google Scholar 

  6. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng R Rep 74(12):377–406

    Article  Google Scholar 

  7. Gao X, Liu X, Zhu Z, Wang X, Xie Z (2016) Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M=Ni, Co, Zn and Sr) modified TiO2 nanorod arrays. Sci Rep 6(1):30543–30554

    Article  CAS  Google Scholar 

  8. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Cheminform 107:2891–2959

    CAS  Google Scholar 

  9. He X, Cai Y, Zhang H, Liang C, Zhang H, Liang C (2011) Photocatalytic degradation of organic pollutants with ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. Mater Chem 21(2):475–480

    Article  CAS  Google Scholar 

  10. Gao ZD, Liu HF, Li CY, Song YY (2013) Biotemplated synthesis of au nanoparticles-TiO2 nanotube junctions for enhanced direct electrochemistry of heme proteins. Chem Commun 49(8):774–776

    Article  CAS  Google Scholar 

  11. Teng W, Wang Y, Huang H, Li X, Tang Y (2017) Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition. Appl Surf Sci 425:507–517

    Article  CAS  Google Scholar 

  12. Feng W, Lin L, Li H, Chi B, Pu J, Li J (2017) Hydrogenated TiO2/ZnO heterojunction nanorod arrays with enhanced performance for photoelectrochemical water splitting. Int J Hydrogen Energ 42(7):3938–3946

    Article  CAS  Google Scholar 

  13. Koo MS, Cho K, Yoon J, Choi W (2017) Photoelectrochemical degradation of organic compounds coupled with molecular hydrogen generation using electrochromic TiO2 nanotube arrays. Environ Sci Technol 51(11):6590–6598

    Article  CAS  Google Scholar 

  14. Wu H, Li D, Zhu X, Yang C, Liu D, Chen X, Song Y, Lu L, Chen X, Song Y, Lu L (2014) High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim Acta 116:129–136

    Article  CAS  Google Scholar 

  15. Ling W, Fang L, Xu Y, Zhang JW, Zhang D, Li G, Li H (2015) Plasmon-induced photoelectrocatalytic activity of au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Appl Catal B-Environ 164:217–224

    Article  Google Scholar 

  16. Liu J, Ruan L, Adeloju SB, Cheng Y (2014) BiOI/TiO2 nanotube arrays a unique flake-tube structured p-n junction with remarkable visible-light photoelectrocatalytic performance and stability. Dalton Trans 43(4):1706–1715

    Article  CAS  Google Scholar 

  17. Kim C, Kim S, Lee J, Kim J, Yoon J (2015) Capacitive and oxidant generating properties of black-colored TiO2 nanotube array fabricated by electrochemical self-doping. ACS Appl Mater Interfaces 7(14):7486–7491

    Article  CAS  Google Scholar 

  18. Singh AP, Kodan N, Mehta BR (2016) Enhancing the photoelectrochemical properties of titanium dioxide by thermal treatment in oxygen deficient environment. Appl Surf Sci 372:63–691

    Article  CAS  Google Scholar 

  19. Zhang A, Gong F, Xiao Y, Guo X, Li F, Wang L, Zhang Y, Zhang L (2017) Electrochemical reductive doping and interfacial impedance of TiO2 nanotube arrays in aqueous and aprotic solvents. J Electrochem Soc 164(2):H91–H96

    Article  CAS  Google Scholar 

  20. Meng M, Zhou S, Yang L, Gan Z, Liu K, Tian F, Zhu Y, Li C, Liu W, Yuan H, Zhang Y (2018) Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting. Nanotechnology 29(15):155401–155416

    Article  Google Scholar 

  21. Xiong Y, Yang L, Xiao P, Yang Y (2018) Enhanced charge separation and oxidation kinetics by loading Pt nanoparticles with hydrogenated TiO2 nanotubes. J Mater Sci 53(10):7703–7714

    Article  CAS  Google Scholar 

  22. Islam SZ, Reed A, Nagpure S, Wanninayake N, Browing JF, Strzalka J, Kim DY, Rankin SE (2018) Hydrogen incorporation by plasma treatment gives mesoporous black TiO2 thin films with visible photoelectrochemical water oxidation activity. Microporous Mesoporous Mater 29:261–295

    Google Scholar 

  23. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750

    Article  CAS  Google Scholar 

  24. Zhang X, Hu W, Zhang K, Wang J, Sun B, Li H, Qiao P, Wang L, Zhou W (2017) Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts. ACS Sustain Chem Eng 5(8):6894–6901

    Article  CAS  Google Scholar 

  25. Sun D, Zhang Y, Yan S, Sun K, Wang G, Bu Y, Xie G (2018) Fabrication of excellent heterojunction assisting by interfaced oxygen vacancy to improve the separation capacity of photogenerated carriers. Adv Mater Interfaces 5:1325–1342

    Google Scholar 

  26. Zhao S, Chen Y, Zhao Z, Jiang L, Zhang C, Kong J, Zhu X (2018) Enhanced capacitance of TiO2 nanotubes topped with nanograss by H3PO4 soaking and hydrogenation doping. Electrochim Acta 266:233–241

    Article  CAS  Google Scholar 

  27. Sierra-Uribe H, Carrera-Crespo JE, Cano A, Cordoba-Tuta EM, Gonzalez I, Acevedo-Pena P (2018) Electroreduction as a viable strategy to obtain TiO2 nanotube films with preferred anatase crystal orientation and its impact on photoelectrochemical performance. J Solid State Electrochem 22(6):1881–1891

    Article  CAS  Google Scholar 

  28. FabregatSantiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA (2008) High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J Am Chem Soc 130(34):11312–11316

    Article  CAS  Google Scholar 

  29. Berger T, Lana-Villarreal T, Monllor-Satoca D, Roberto G (2006) Charge transfer reductive doping of nanostructured TiO2 thin films as a way to improve their photoelectrocatalytic performance. Electrochem Commun 8(11):1713–1718

    Article  CAS  Google Scholar 

  30. Xu GQ, Liu HP, Wang JW, Lv J, Zheng ZX, Wu YC (2014) Photoelectrochemical performances and potential applications of TiO2 nanotube arrays modified with ag and Pt nanoparticles. Electrochim Acta 121:194–202

    Article  CAS  Google Scholar 

  31. Pang YJ, Xu GQ, Feng Q, Lv J, Qin YQ, Zhang Y, Zheng ZX, Wu YC (2018) Crystalline orientation preference for TiO2 nanotube arrays with efficient photoelectrochemical properties. Phys Lett A 382(38):2759–2762

    Article  CAS  Google Scholar 

  32. Pan D, Huang H, Wang X, Wang L, Liao H, Li Z, Wu M (2014) C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors. J Mater Chem A 2(29):11454–11464

    Article  CAS  Google Scholar 

  33. Lee S, Park IJ, Kim DH, Seong WM, Kim DW, Han GS, Kim JY, Jung HS, Hong KS (2012) Energy Environ Sci 5(7):7989–7995

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the 111 Project “New Materials and Technology for Clean Energy” (B18018) and the Key Technologies R & D Program of Anhui Province (1704c0402195).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangqing Xu, Pengjie Zhang or Yucheng Wu.

Additional information

Dedicated to the memory of Ivo Alexandre Hümmelgen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Feng, Q., Wang, Z. et al. Structures and photoelectrochemical performances of reduced TiO2 NTAs obtained by hydrogen thermal and electrochemical reduction methods. J Solid State Electrochem 24, 365–374 (2020). https://doi.org/10.1007/s10008-019-04358-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04358-7

Keywords

Navigation