Skip to main content
Log in

Modeling of hygroscopicity parameter kappa of organic aerosols using quantitative structure-property relationships

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The hygroscopicity of organic aerosol in the atmosphere can be represented by a semi-empirical single parameter, κ. In this work we test possibilities for developing quantitative structure-property relationship (QSPR) models for κ based on chemical similarity. Models were developed in two ways: by manually assessing the suitability of several plausible physico-chemical descriptors; and by systematically evaluating hundreds of constitutional (e.g. number of particular atoms, bond types, molecular weight,...), topological, electrostatic, geometrical and quantum-chemical descriptors with the QSPR modelling software CODESSA (COmprehensive DEscriptors for Structural and Statistical Analysis). A set of 74 compounds with measured κ values was taken from the literature and prediction capabilities of the developed models were evaluated by leave-one-out cross-validation procedure. A 5-parameter linear regression model obtained with CODESSA was found to be the most suitable. Among the five descriptors, the two providing the highest contributions to the total variance were found to be (i) the final heat of formation divided by the number of atoms (69 %) and (ii) the ratio of molecular weight and molecular volume (16 %), although other topological and electrostatic descriptors were also of non-negligible importance for prediction of κ. The squared correlation coefficient and the root mean square error of a leave-one-out cross-validation procedure were 0.80 and 0.037, respectively. The results show that quantitative structure-property relationship approaches are useful for modeling κ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham M.H., McGowan J.C.: The use of characteristic volumes to measure cavity terms in reversed phase liquid-chromatography. Chromatographia. 23(4), 243–246 (1987)

    Article  Google Scholar 

  • Aumont B., Szopa S., Madronich S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos. Chem. Phys. 5, 2497–2517 (2005)

    Article  Google Scholar 

  • Basak S.C., Magnuson V.R.: Molecular topology and narcosis - a quantitative structure-activity relationship (QSAR) study of alcohols using complementary information-content (CIC). Arzneimittel.-Forsch. 33-1(4), 501–503 (1983)

    Google Scholar 

  • Broekhuizen K., Kumar P.P., Abbatt J.P.D.: Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species. Geophys. Res. Lett. 31(1), (2004). doi:10.1029/2003GL018203

  • Carslaw K.S., Lee L.A., Reddington C.L., Pringle K.J., Rap A., Forster P.M., Mann G.W., Spracklen D.V., Woodhouse M.T., Regayre L.A., Pierce J.R.: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature. 503(7474), 67 (2013)

    Article  Google Scholar 

  • Chang R.Y.W., Slowik J.G., Shantz N.C., Vlasenko A., Liggio J., Sjostedt S.J., Leaitch W.R., Abbatt J.P.D.: The hygroscopicity parameter (kappa) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation. Atmos. Chem. Phys. 10(11), 5047–5064 (2010)

    Article  Google Scholar 

  • Clegg S.L., Seinfeld J.H., Brimblecombe P.: Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. J. Aerosol Sci. 32(6), 713–738 (2001)

    Article  Google Scholar 

  • Csizmadia, I.G.: Theory and Practice of MO Calculations on Organic Molecules, vol. 13. Elsevier Science Ltd, (1978)

  • Dearden J.C., Rotureau P., Fayet G.: QSPR prediction of physico-chemical properties for REACH. SAR QSAR Environ. Res. 24(4), 545–584 (2013)

    Article  Google Scholar 

  • Dusek U., Frank G.P., Massling A., Zeromskiene K., Iinuma Y., Schmid O., Helas G., Hennig T., Wiedensohler A., Andreae M.O.: Water uptake by biomass burning aerosol at sub- and supersaturated conditions: closure studies and implications for the role of organics. Atmos. Chem. Phys. 11(18), 9519–9532 (2011)

    Article  Google Scholar 

  • Facchini M.C., Mircea M., Fuzzi S., Charlson R.J.: Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature. 401(6750), 257–259 (1999)

    Article  Google Scholar 

  • Farmer D.K., Cappa C.D., Kreidenweis S.M.: Atmospheric processes and their controlling influence on cloud condensation nuclei activity. Chem. Rev. 115(10), 4199–4217 (2015)

    Article  Google Scholar 

  • Fredenslund A., Jones R.L., Prausnitz J.M.: Group-contribution estimation of activity-coefficients in nonideal liquid-mixtures. AICHE J. 21(6), 1086–1099 (1975)

    Article  Google Scholar 

  • Gunthe S.S., King S.M., Rose D., Chen Q., Roldin P., Farmer D.K., Jimenez J.L., Artaxo P., Andreae M.O., Martin S.T., Poschl U.: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos. Chem. Phys. 9(19), 7551–7575 (2009)

    Article  Google Scholar 

  • Hallquist M., Wenger J.C., Baltensperger U., Rudich Y., Simpson D., Claeys M., Dommen J., Donahue N.M., George C., Goldstein A.H., Hamilton J.F., Herrmann H., Hoffmann T., Iinuma Y., Jang M., Jenkin M.E., Jimenez J.L., Kiendler-Scharr A., Maenhaut W., McFiggans G., Mentel T.F., Monod A., Prevot A.S.H., Seinfeld J.H., Surratt J.D., Szmigielski R., Wildt J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9(14), 5155–5236 (2009)

    Article  Google Scholar 

  • Hawkins D.M., Basak S.C., Mills D.: Assessing model fit by cross-validation. J. Chem. Inf. Comput. Sci. 43(2), 579–586 (2003)

    Article  Google Scholar 

  • Hodzic A., Aumont B., Knote C., Lee-Taylor J., Madronich S., Tyndall G.: Volatility dependence of Henry’s law constants of condensable organics: application to estimate depositional loss of secondary organic aerosols. Geophys. Res. Lett. 41(13), 4795–4804 (2014)

    Article  Google Scholar 

  • Hudson J.G., Da X.Y.: Volatility and size of cloud condensation nuclei. J. Geophys. Res. 101(D2), 4435–4442 (1996)

    Article  Google Scholar 

  • IPCC: Climate Change 2014: Synthesis report. contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change. Geneva (2014).

  • Jimenez J.L., Canagaratna M.R., Donahue N.M., Prevot A.S.H., Zhang Q., Kroll J.H., DeCarlo P.F., Allan J.D., Coe H., Ng N.L., Aiken A.C., Docherty K.S., Ulbrich I.M., Grieshop A.P., Robinson A.L., Duplissy J., Smith J.D., Wilson K.R., Lanz V.A., Hueglin C., Sun Y.L., Tian J., Laaksonen A., Raatikainen T., Rautiainen J., Vaattovaara P., Ehn M., Kulmala M., Tomlinson J.M., Collins D.R., Cubison M.J., Dunlea E.J., Huffman J.A., Onasch T.B., Alfarra M.R., Williams P.I., Bower K., Kondo Y., Schneider J., Drewnick F., Borrmann S., Weimer S., Demerjian K., Salcedo D., Cottrell L., Griffin R., Takami A., Miyoshi T., Hatakeyama S., Shimono A., Sun J.Y., Zhang Y.M., Dzepina K., Kimmel J.R., Sueper D., Jayne J.T., Herndon S.C., Trimborn A.M., Williams L.R., Wood E.C., Middlebrook A.M., Kolb C.E., Baltensperger U., Worsnop D.R.: Evolution of Organic Aerosols in the Atmosphere. Science. 326(5959), 1525–1529 (2009)

    Article  Google Scholar 

  • Kanakidou M., Seinfeld J.H., Pandis S.N., Barnes I., Dentener F.J., Facchini M.C., Van Dingenen R., Ervens B., Nenes A., Nielsen C.J., Swietlicki E., Putaud J.P., Balkanski Y., Fuzzi S., Horth J., Moortgat G.K., Winterhalter R., Myhre C.E.L., Tsigaridis K., Vignati E., Stephanou E.G., Wilson J.: Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5, 1053–1123 (2005)

    Article  Google Scholar 

  • Karelson M., Lobanov V.S., Katritzky A.R.: Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 96(3), 1027–1043 (1996)

    Article  Google Scholar 

  • Katritzky, A.R., Lobadov, V.S., Karelson, M.: CODESSA PRO User’s Manual. Gainesville (2005).

  • Katritzky A.R., Kuanar M., Slavov S., Hall C.D., Karelson M., Kahn I., Dobchev D.A.: Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chem. Rev. 110(10), 5714–5789 (2010)

    Article  Google Scholar 

  • Kirpichenok M.A., Zefirov N.S.: Electronegativity and geometry of molecules. 1. principles of developed approach and analysis of the effect of nearest electrostatic interactions on the bond length in organic-molecules. Zh. Org. Chim. 23(4), 673–691 (1987)

    Google Scholar 

  • Köhler H.: The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 32(2), 1152–1161 (1936)

    Article  Google Scholar 

  • Kroll J.H., Seinfeld J.H.: Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42(16), 3593–3624 (2008)

    Article  Google Scholar 

  • Lambe A.T., Ahern A.T., Wright J.P., Croasdale D.R., Davidovits P., Onasch T.B.: Oxidative aging and cloud condensation nuclei activation of laboratory combustion soot. J. Aerosol Sci. 79, 31–39 (2015)

    Article  Google Scholar 

  • Lee-Taylor J., Hodzic A., Madronich S., Aumont B., Camredon M., Valorso R.: Multiday production of condensing organic aerosol mass in urban and forest outflow. Atmos. Chem. Phys. 15(2), 595–615 (2015)

    Article  Google Scholar 

  • Levin E.J.T., Prenni A.J., Palm B.B., Day D.A., Campuzano-Jost P., Winkler P.M., Kreidenweis S.M., DeMott P.J., Jimenez J.L., Smith J.N.: Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado. Atmos. Chem. Phys. 14(5), 2657–2667 (2014)

    Article  Google Scholar 

  • Massoli P., Lambe A.T., Ahern A.T., Williams L.R., Ehn M., Mikkila J., Canagaratna M.R., Brune W.H., Onasch T.B., Jayne J.T., Petaja T., Kulmala M., Laaksonen A., Kolb C.E., Davidovits P., Worsnop D.R.: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles. Geophys. Res. Lett. 37, (2010). doi:10.1029/2010GL045258

  • McFiggans G., Artaxo P., Baltensperger U., Coe H., Facchini M.C., Feingold G., Fuzzi S., Gysel M., Laaksonen A., Lohmann U., Mentel T.F., Murphy D.M., O’Dowd C.D., Snider J.R., Weingartner E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys. 6, 2593–2649 (2006)

    Article  Google Scholar 

  • Mei F., Setyan A., Zhang Q., Wang J.: CCN activity of organic aerosols observed downwind of urban emissions during CARES. Atmos. Chem. Phys. 13(24), 12155–12169 (2013)

    Article  Google Scholar 

  • Nannoolal Y., Rarey J., Ramjugernath D., Cordes W.: Estimation of pure component properties pPart 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilib. 226, 45–63 (2004)

    Article  Google Scholar 

  • Nannoolal Y., Rarey J., Ramjugernath D.: Estimation of pure component properties - pPart 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilib. 269(1–2), 117–133 (2008)

    Article  Google Scholar 

  • Pankow J.F., Asher W.E.: SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds. Atmos. Chem. Phys. 8(10), 2773–2796 (2008)

    Article  Google Scholar 

  • Petters M.D., Kreidenweis S.M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7(8), 1961–1971 (2007)

    Article  Google Scholar 

  • Petters M.D., Kreidenweis S.M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity - part 2: including solubility. Atmos. Chem. Phys. 8(20), 6273–6279 (2008)

    Article  Google Scholar 

  • Petters M.D., Kreidenweis S.M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity - part 3: including surfactant partitioning. Atmos. Chem. Phys. 13(2), 1081–1091 (2013)

    Article  Google Scholar 

  • Petters M.D., Kreidenweis S.M., Prenni A.J., Sullivan R.C., Carrico C.M., Koehler K.A., Ziemann P.J.: Role of molecular size in cloud droplet activation. Geophys. Res. Lett. 36, (2009). doi:10.1029/2009GL040131

  • Petters M.D., Kreidenweis S.M., Ziemann P.J.: Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods. Geosci. Model Dev. 9(1), 111–124 (2016)

    Article  Google Scholar 

  • Pringle K.J., Tost H., Pozzer A., Poschl U., Lelieveld J.: Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. Atmos. Chem. Phys. 10(12), 5241–5255 (2010)

    Article  Google Scholar 

  • Prisle N.L., Dal Maso M., Kokkola H.: A simple representation of surface active organic aerosol in cloud droplet formation. Atmos. Chem. Phys. 11(9), 4073–4083 (2011)

    Article  Google Scholar 

  • Randic M.: High quality structure-property regressions. Boiling points of smaller alkanes. New J. Chem. 24(3), 165–171 (2000)

    Article  Google Scholar 

  • Randic M.: The connectivity index 25 years after. J. Mol. Graph. Model. 20(1), 19–35 (2001)

    Article  Google Scholar 

  • Randic M., Pompe M.: Retro-regression - a way to resolve multivariate regression ambiguities. Acta Chim. Slov. 52(4), 408–416 (2005)

    Google Scholar 

  • Raventos-Duran T., Camredon M., Valorso R., Mouchel-Vallon C., Aumont B.: Structure-activity relationships to estimate the effective Henry’s law constants of organics of atmospheric interest. Atmos. Chem. Phys. 10(16), 7643–7654 (2010)

    Article  Google Scholar 

  • Rickards A.M.J., Miles R.E.H., Davies J.F., Marshall F.H., Reid J.P.: Measurements of the sensitivity of aerosol hygroscopicity and the kappa parameter to the O/C ratio. J. Phys. Chem. A. 117(51), 14120–14131 (2013)

    Article  Google Scholar 

  • Rissler J., Vestin A., Swietlicki E., Fisch G., Zhou J., Artaxo P., Andreae M.O.: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. Phys. 6, 471–491 (2006)

    Article  Google Scholar 

  • Rissman T.A., Varutbangkul V., Surratt J.D., Topping D.O., McFiggans G., Flagan R.C., Seinfeld J.H.: Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions. Atmos. Chem. Phys. 7(11), 2949–2971 (2007)

    Article  Google Scholar 

  • Rosenfeld D., Sherwood S., Wood R., Donner L.: Climate Effects of Aerosol-Cloud Interactions. Science. 343(6169), 379–380 (2014)

    Article  Google Scholar 

  • Ruehl C.R., Wilson K.R.: Surface organic mono layers control the hygroscopic growth of Submicrometer particles at high relative humidity. J. Phys. Chem. A. 118(22), 3952–3966 (2014)

    Article  Google Scholar 

  • Ruehl C.R., Davies J.F., Wilson K.R.: An interfacial mechanism for cloud droplet formation on organic aerosols. Science. 351(6280), 1447–1450 (2016)

    Article  Google Scholar 

  • Seinfeld J.H., Pandis S.N.: Atmospheric chemistry and physics: from air pollution to climate change 2nd edition. Wiley (2006)

  • Sihto S.L., Mikkila J., Vanhanen J., Ehn M., Liao L., Lehtipalo K., Aalto P.P., Duplissy J., Petaja T., Kerminen V.M., Boy M., Kulmala M.: Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest. Atmos. Chem. Phys. 11(24), 13269–13285 (2011)

    Article  Google Scholar 

  • Sorjamaa R., Svenningsson B., Raatikainen T., Henning S., Bilde M., Laaksonen A.: The role of surfactants in Kohler theory reconsidered. Atmos. Chem. Phys. 4, 2107–2117 (2004)

    Article  Google Scholar 

  • Stewart J.J.P.: MOPAC: a semiempirical molecular orbital program. J. Comput.-Aided Mater. 4(1), 1–45 (1990)

    Article  Google Scholar 

  • Suda S.R., Petters M.D., Yeh G.K., Strollo C., Matsunaga A., Faulhaber A., Ziemann P.J., Prenni A.J., Carrico C.M., Sullivan R.C., Kreidenweis S.M.: Influence of functional groups on organic aerosol cloud condensation nucleus activity. Environ. Sci. Technol. 48(17), 10182–10190 (2014)

    Article  Google Scholar 

  • Sullivan R.C., Moore M.J.K., Petters M.D., Kreidenweis S.M., Roberts G.C., Prather K.A.: Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys. 9(10), 3303–3316 (2009)

    Article  Google Scholar 

  • Topping D.O., McFiggans G.B., Coe H.: A curved multi-component aerosol hygroscopicity model framework: part 2 – including organic compounds. Atmos. Chem. Phys. 5(5), 1223–1242 (2005)

    Article  Google Scholar 

  • Tuckermann R.: Surface tension of aqueous solutions of water-soluble organic and inorganic compounds. Atmos. Environ. 41(29), 6265–6275 (2007)

    Article  Google Scholar 

  • Wex H., Hennig T., Salma I., Ocskay R., Kiselev A., Henning S., Massling A., Wiedensohler A., Stratmann F.: Hygroscopic growth and measured and modeled critical super-saturations of an atmospheric HULIS sample. Geophys. Res. Lett. 34(2), (2007). doi:10.1029/2006GL028260

  • Zefirov N.S., Kirpichenok M.A., Ismailov F.F., Trofimov M.I.: Calculation schemes for atomic electronegativities in molecular graphs within the framework of sanderson principle. Dokl. Akad. Nauk SSSR. 296(4), 883–887 (1987)

    Google Scholar 

  • Zhao D.F., Buchholz A., Kortner B., Schlag P., Rubach F., Fuchs H., Kiendler-Scharr A., Tillmann R., Wahner A., Watne A.K., Hallquist M., Flores J.M., Rudich Y., Kristensen K., Hansen A.M.K., Glasius M., Kourtchev I., Kalberer M., Mentel T.F.: Cloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA). Atmos. Chem. Phys. 16(2), 1105–1121 (2016)

    Article  Google Scholar 

  • Ziemann P.J., Atkinson R.: Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 41(19), 6582–6605 (2012)

    Article  Google Scholar 

  • Zuend A., Marcolli C., Booth A.M., Lienhard D.M., Soonsin V., Krieger U.K., Topping D.O., McFiggans G., Peter T., Seinfeld J.H.: New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 11(17), 9155–9206 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jernej Markelj.

Electronic supplementary material

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markelj, J., Madronich, S. & Pompe, M. Modeling of hygroscopicity parameter kappa of organic aerosols using quantitative structure-property relationships. J Atmos Chem 74, 357–376 (2017). https://doi.org/10.1007/s10874-016-9347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-016-9347-3

Keywords

Navigation