Skip to main content

Advertisement

Log in

Spent coffee derived hierarchical porous carbon and its application for energy storage

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This work addresses the derivation of hierarchical porous carbon material from waste biomass of spent coffee ground (SCG) via a facile pyrolysis/activation process, where the calcination of wet SCG at 800 °C induced pore development, which is attributed to the intrinsic moisture in raw SCG. Further treatment using a HNO3 and H2O2 solution at 80 °C resulted in a hierarchical pore structure of micro- and meso-pores in the carbon material with a high surface area of 1037.52 m2/g. Nitrogen, a rich heteroatom in raw SCG, is self-incorporated well in the carbon skeleton of the resultant porous carbon with a high nitrogen content of 3 w/w%. The prepared hierarchical porous carbon was tested as a material for Li–S batteries, and displayed a capacity of more than 600 mAh g−1 at 0.2 C up to 150 cycles. As a sustainable carbon material, the SCG derived porous carbon, which has abundant heteroatoms of O and N, can be employed as a potential energy storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.M. Abioye, F.N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew. Sustain. Energy Rev. 52, 1282–1293 (2015). https://doi.org/10.1016/j.rser.2015.07.129

    Article  CAS  Google Scholar 

  2. P. Veerakumar, I. Panneer Muthuselvam, C.-T. Hung, K.-C. Lin, F.-C. Chou, S.-B. Liu, Biomass-derived activated carbon supported Fe3O4 nanoparticles as recyclable catalysts for reduction of nitroarenes. ACS Sustain. Chem. Eng. 4(12), 6772–6782 (2016). https://doi.org/10.1021/acssuschemeng.6b01727

    Article  CAS  Google Scholar 

  3. A. Ganesan, R. Mukherjee, J. Raj, M.M. Shaijumon, Nanoporous rice husk derived carbon for gas storage and high performance electrochemical energy storage. J. Porous Mater. 21(5), 839–847 (2014). https://doi.org/10.1007/s10934-014-9833-4

    Article  CAS  Google Scholar 

  4. Y.-K. Lee, S. Chung, S.Y. Hwang, S. Lee, K.S. Eom, S.B. Hong, G.G. Park, B.-J. Kim, J.-J. Lee, H.-I. Joh, Upcycling of lignin waste to activated carbon for supercapacitor electrode and organic adsorbent. Korean J. Chem. Eng. 36(9), 1543–1547 (2019). https://doi.org/10.1007/s11814-019-0340-9

    Article  CAS  Google Scholar 

  5. Y.-M. Chang, W.-T. Tsai, M.-H. Li, Characterization of activated carbon prepared from chlorella-based algal residue. Bioresour. Technol. 184, 344–348 (2015). https://doi.org/10.1016/j.biortech.2014.09.131

    Article  PubMed  CAS  Google Scholar 

  6. Y. Li, L. Liu, R. Shi, S. Yang, C. Zhao, Y. Shi, C. Cao, X. Yan, Natural okra shells derived nitrogen-doped porous carbon to regulate polysulfides for high-performance lithium–sulfur batteries. Energy Technol. (2019). https://doi.org/10.1002/ente.201900165

    Article  Google Scholar 

  7. K.T. Cho, S.B. Lee, J.W. Lee, Facile synthesis of highly electrocapacitive nitrogen-doped graphitic porous carbons. J. Phys. Chem. C 118(18), 9357–9367 (2014). https://doi.org/10.1021/jp501742x

    Article  CAS  Google Scholar 

  8. Y.K. Kim, G.M. Kim, J.W. Lee, Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture. J. Mater. Chem. A 3(20), 10919–10927 (2015). https://doi.org/10.1039/C5TA01776A

    Article  CAS  Google Scholar 

  9. J. Zhang, J.W. Lee, Production of boron-doped porous carbon by the reaction of carbon dioxide with sodium borohydride at atmospheric pressure. Carbon 53, 216–221 (2013). https://doi.org/10.1016/j.carbon.2012.10.051

    Article  CAS  Google Scholar 

  10. H. Chen, P. Xia, W. Lei, Y. Pan, Y. Zou, Z. Ma, Preparation of activated carbon derived from biomass and its application in lithium–sulfur batteries. J. Porous Mater. (2019). https://doi.org/10.1007/s10934-019-00720-2

    Article  Google Scholar 

  11. N. Bader, R. Zacharia, O. Abdelmottaleb, D. Cossement, How the activation process modifies the hydrogen storage behavior of biomass-derived activated carbons. J. Porous Mater. 25(1), 221–234 (2018). https://doi.org/10.1007/s10934-017-0436-8

    Article  CAS  Google Scholar 

  12. T. Tsubota, K. Ishimoto, S. Kumagai, S. Kamimura, T. Ohno, Cascade use of bamboo as raw material for several high value products: production of xylo-oligosaccharide and activated carbon for EDLC electrode from bamboo. J. Porous Mater. 25(5), 1541–1549 (2018). https://doi.org/10.1007/s10934-018-0567-6

    Article  CAS  Google Scholar 

  13. Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016). https://doi.org/10.1016/j.nanoen.2015.10.038

    Article  CAS  Google Scholar 

  14. M. Chen, S. Jiang, C. Huang, X. Wang, S. Cai, K. Xiang, Y. Zhang, J. Xue, Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium–sulfur batteries. Chemsuschem 10(8), 1803–1812 (2017). https://doi.org/10.1002/cssc.201700050

    Article  PubMed  CAS  Google Scholar 

  15. J. Zhang, J.W. Lee, Supercapacitor electrodes derived from carbon dioxide. ACS Sustain. Chem. Eng. 2(4), 735–740 (2014). https://doi.org/10.1021/sc400414r

    Article  CAS  Google Scholar 

  16. L. Qiang, Z. Hu, Z. Li, Y. Yang, X. Wang, Y. Zhou, X. Zhang, W. Wang, Q. Wang, Buckwheat husk-derived hierarchical porous nitrogen-doped carbon materials for high-performance symmetric supercapacitor. J. Porous Mater. 26(4), 1217–1225 (2019). https://doi.org/10.1007/s10934-019-00723-z

    Article  CAS  Google Scholar 

  17. G. Ren, S. Li, Z.-X. Fan, J. Warzywoda, Z. Fan, Soybean-derived hierarchical porous carbon with large sulfur loading and sulfur content for high-performance lithium–sulfur batteries. J. Mater. Chem. A 4(42), 16507–16515 (2016). https://doi.org/10.1039/c6ta07446d

    Article  CAS  Google Scholar 

  18. L. Zeng, X. Li, S. Fan, J. Mu, M. Qin, X. Wang, G. Gan, M. Tadé, S. Liu, Seaweed-derived nitrogen-rich porous biomass carbon as bifunctional materials for effective electrocatalytic oxygen reduction and high-performance gaseous toluene absorbent. ACS Sustain. Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.8b05863

    Article  Google Scholar 

  19. J. Ou, L. Yang, X. Xi, Nitrogen-rich porous carbon anode with high performance for sodium ion batteries. J. Porous Mater. 24(1), 189–192 (2017). https://doi.org/10.1007/s10934-016-0251-7

    Article  Google Scholar 

  20. T.M. Mata, A.A. Martins, N.S. Caetano, Bio-refinery approach for spent coffee grounds valorization. Bioresour. Technol. 247, 1077–1084 (2018). https://doi.org/10.1016/j.biortech.2017.09.106

    Article  PubMed  CAS  Google Scholar 

  21. J. Park, B. Kim, J. Son, J.W. Lee, Solvo-thermal in situ transesterification of wet spent coffee grounds for the production of biodiesel. Bioresour. Technol. 249, 494–500 (2018). https://doi.org/10.1016/j.biortech.2017.10.048

    Article  PubMed  CAS  Google Scholar 

  22. J. Park, B. Kim, J.W. Lee, In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresour. Technol. 221, 55–60 (2016). https://doi.org/10.1016/j.biortech.2016.09.001

    Article  PubMed  CAS  Google Scholar 

  23. H.S. Seo, B.H. Park, Phenolic compound extraction from spent coffee grounds for antioxidant recovery. Korean J. Chem. Eng. 36(2), 186–190 (2019). https://doi.org/10.1007/s11814-018-0208-4

    Article  CAS  Google Scholar 

  24. D.R. Vardon, B.R. Moser, W. Zheng, K. Witkin, R.L. Evangelista, T.J. Strathmann, K. Rajagopalan, B.K. Sharma, Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustain. Chem. Eng. 1(10), 1286–1294 (2013). https://doi.org/10.1021/sc400145w

    Article  CAS  Google Scholar 

  25. A. Kovalcik, S. Obruca, I. Marova, Valorization of spent coffee grounds: a review. Food Bioprod. Process. 110, 104–119 (2018). https://doi.org/10.1016/j.fbp.2018.05.002

    Article  CAS  Google Scholar 

  26. C. Moreno-Castilla, M.A. Ferro-Garcia, J.P. Joly, I. Bautista-Toledo, F. Carrasco-Marin, J. Rivera-Utrilla, Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 11(11), 4386–4392 (1995). https://doi.org/10.1021/la00011a035

    Article  CAS  Google Scholar 

  27. A. Macías-García, M.A. Díaz-Díez, E.M. Cuerda-Correa, M. Olivares-Marín, J. Gañan-Gómez, Study of the pore size distribution and fractal dimension of HNO3-treated activated carbons. Appl. Surf. Sci. 252(17), 5972–5975 (2006). https://doi.org/10.1016/j.apsusc.2005.11.010

    Article  CAS  Google Scholar 

  28. J. Son, B. Kim, J. Park, J. Yang, J.W. Lee, Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel. Bioresour. Technol. 259, 465–468 (2018). https://doi.org/10.1016/j.biortech.2018.03.067

    Article  PubMed  CAS  Google Scholar 

  29. Y.-R. Shin, S.-M. Jung, I.-Y. Jeon, J.-B. Baek, The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. Carbon 52, 493–498 (2013). https://doi.org/10.1016/j.carbon.2012.10.001

    Article  CAS  Google Scholar 

  30. X. Lu, J. Jiang, K. Sun, X. Xie, Y. Hu, Surface modification, characterization and adsorptive properties of a coconut activated carbon. Appl. Surf. Sci. 258(20), 8247–8252 (2012). https://doi.org/10.1016/j.apsusc.2012.05.029

    Article  CAS  Google Scholar 

  31. R. Azargohar, S. Nanda, J.A. Kozinski, A.K. Dalai, R. Sutarto, Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125, 90–100 (2014). https://doi.org/10.1016/j.fuel.2014.01.083

    Article  CAS  Google Scholar 

  32. K. Malins, J. Brinks, V. Kampars, I. Malina, Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Appl. Catal. A 519, 99–106 (2016). https://doi.org/10.1016/j.apcata.2016.03.020

    Article  CAS  Google Scholar 

  33. K. Zhang, L. Wang, W. Cai, L.-F. Chen, D. Wang, Y. Chen, H. Pan, L. Wang, Y. Qian, Pyridinic and pyrrolic nitrogen-enriched carbon as a polysulfide blocker for high-performance lithium–sulfur batteries. Inorg. Chem. Front. 6(4), 955–960 (2019). https://doi.org/10.1039/C9QI00052F

    Article  CAS  Google Scholar 

  34. X. Wang, Z. Zhang, Y. Qu, Y. Lai, J. Li, Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. J. Power Sour. 256, 361–368 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.093

    Article  CAS  Google Scholar 

  35. G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries. Nat. Commun. 7, 10601 (2016). https://doi.org/10.1038/ncomms10601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. C. Dong, W. Gao, B. Jin, Q. Jiang, Advances in cathode materials for high-performance lithium–sulfur batteries. iScience 6, 151–198 (2018). https://doi.org/10.1016/j.isci.2018.07.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. F. Liu, D. Xue, An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitances. Chem. A 19(32), 10716–10722 (2013). https://doi.org/10.1002/chem.201300679

    Article  CAS  Google Scholar 

  38. J. Yang, S. Wang, Z. Ma, Z. Du, C. Li, J. Song, G. Wang, G. Shao, Novel nitrogen-doped hierarchically porous coralloid carbon materials as host matrixes for lithium–sulfur batteries. Electrochim. Acta 159, 8–15 (2015). https://doi.org/10.1016/j.electacta.2015.01.187

    Article  CAS  Google Scholar 

  39. Y.K. Kim, J.H. Park, J.W. Lee, Facile nano-templated CO2 conversion into highly interconnected hierarchical porous carbon for high-performance supercapacitor electrodes. Carbon 126, 215–224 (2018). https://doi.org/10.1016/j.carbon.2017.10.020

    Article  CAS  Google Scholar 

  40. Y. Song, H. Wang, Q. Ma, D. Li, W. Yu, G. Liu, T. Wang, Y. Yang, X. Dong, J. Wang, Dandelion derived nitrogen-doped hollow carbon host for encapsulating sulfur in lithium sulfur battery. ACS Sustain. Chem. Eng. 7(3), 3042–3051 (2019). https://doi.org/10.1021/acssuschemeng.8b04648

    Article  CAS  Google Scholar 

  41. D.K. Lee, S.J. Kim, Y.-J. Kim, H. Choi, D.W. Kim, H.-J. Jeon, C.W. Ahn, J.W. Lee, H.-T. Jung, Graphene oxide/carbon nanotube bilayer flexible membrane for high-performance Li–S batteries with superior physical and electrochemical properties. Adv. Mater. Interfaces (2019). https://doi.org/10.1002/admi.201801992

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2019M3F2A1072237) and the Korea CCS R & D program (NRF-2014M1A8A1049297) funded by the Ministry of Science and ICT, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae W. Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Park, J., Baik, S. et al. Spent coffee derived hierarchical porous carbon and its application for energy storage. J Porous Mater 27, 451–463 (2020). https://doi.org/10.1007/s10934-019-00826-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00826-7

Keywords

Navigation