Skip to main content

Advertisement

Log in

All-Cellulose Composite Fibers Obtained by Electrospinning Dispersions of Cellulose Acetate and Cellulose Nanocrystals

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

All-cellulose composite fibers were produced by electrospinning dispersions containing cellulose acetate (CA) and cellulose nanocrystals (CNCs). Precursor polymer matrices were obtained after dispersion of CA with different degrees of substitution in a binary mixture of organic solvents. The obtained fibers of CA loaded with CNCs had typical widths in the nano- and micro-scale and presented a glass transition temperature of 145 °C. The CA component was converted to cellulose by using alkaline hydrolysis to yield all-cellulose composite fibers that preserved the original morphology of the precursor system. Together with Fourier Transform Infrared Spectroscopy fingerprints the thermal behavior of the all-cellulose composite fibers indicated complete conversion of cellulose acetate to regenerated cellulose. Noticeable changes in the thermal, surface and chemical properties were observed upon deacetylation. Not only the thermal transitions of cellulose acetate disappeared but the initial water contact angle of the web was reduced drastically. Overall, we propose a simple method to produce all-cellulose composite fibers which are expected to display improved thermo-mechanical properties while keeping the unique features of the cellulose polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kriegel C, Arrechi A, Kit K, McClements DJ, Weiss J (2008) Crit Rev Food Sci Nutr 48:775–797

    Article  CAS  Google Scholar 

  2. Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific Pub Co Inc, Singapore

  3. Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Eur Polym J 41:423–432

    Article  CAS  Google Scholar 

  4. Subbiah T, Bhat GS, Tock RW, Pararneswaran S, Ramkumar SS (2005) J Appl Polym Sci 96:557–569

    Article  CAS  Google Scholar 

  5. Frey MW (2008) Polym Rev 48:378–391

    Article  CAS  Google Scholar 

  6. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  7. Ma ZW, Kotaki M, Ramakrishna S (2005) J Membr Sci 265:115–123

    Article  CAS  Google Scholar 

  8. Schiffman JD, Schauer CL (2008) Polym Rev 48:317–352

    Article  CAS  Google Scholar 

  9. Li D, Xia Y (2004) Adv Mater 16:1151–1170

    Article  CAS  Google Scholar 

  10. Doshi J, Reneker DH (1995) J Electrostat 35:151–160

    Article  CAS  Google Scholar 

  11. Feng C, Khulbe KC, Matsuura T (2010) J Appl Polym Sci 115:756–776

    Article  CAS  Google Scholar 

  12. Kim CW, Kim DS, Kang SY, Marquez M, Joo YL (2006) Polymer 47:5097–5107

    Article  CAS  Google Scholar 

  13. Turbak AF, El-Kafrawy A, Snyder Jr FW, Auerbach AB (1981) Solvent system for cellulose. Google Patents

  14. Kim CW, Frey MW, Marquez M, Joo YL (2005) J Polym Sci, Part B: Polym Phys 43:1673–1683

    Article  CAS  Google Scholar 

  15. Xu SS, Zhang J, He AH, Li JX, Zhang H, Han CC (2008) Polymer 49:2911–2917

    Article  CAS  Google Scholar 

  16. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Adv Drug Deliv Rev 61:1020–1032

    Article  CAS  Google Scholar 

  17. Zhang LF, Hsieh YL (2008) Carbohydr Polym 71:196–207

    Article  CAS  Google Scholar 

  18. Schilling M, Bouchard M, Khanjian H, Learner T, Phenix A, Rivenc R (2010) Acc Chem Res 43:888–896

    Article  CAS  Google Scholar 

  19. Brydson J (1999) Plastic Materials, Butter worth. Heineman, Oxford

    Google Scholar 

  20. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Prog Polym Sci 26:1605–1688

    Article  CAS  Google Scholar 

  21. Alves CD, Rodrigues FG, de Nascimento ARM, de Meireles CS, Cardoso TL, Zeni M, Mello K, Duarte J (2008) Polym Bull (Heidelberg, Ger.) 60:397–404

    Google Scholar 

  22. Meireles CDS, Rodrigues FG, de Nascimento ARM, Cerqueira DA, Zeni M, Mello K, Lorenzi S (2008) Polym Eng Sci 48:1443–1448

    Article  CAS  Google Scholar 

  23. Barud HS, de AJAM, Santos DB, de Nascimento ARM, Meireles CS, Cerqueira DA, Rodrigues FG, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2008) Thermochim Acta 471:61–69

    Article  CAS  Google Scholar 

  24. Rodrigues FG, Monteiro DS, de Meireles CS, de Nascimento ARM, Cerqueira DA, Barud HS, Ribeiro SJL, Messadeq Y (2008) Carbohydr Polym 73:74–82

    Article  Google Scholar 

  25. Meireles CD, Rodrigues G, Ferreira MF, Cerqueira DA, Assuncao RMN, Ribeiro EAM, Poletto P, Zeni M (2010) Carbohydr Polym 80:954–961

    Article  CAS  Google Scholar 

  26. Liu HQ, Hsieh YL (2002) J Polym Sci, Part B: Polym Phys 40:2119–2129

    Article  CAS  Google Scholar 

  27. Son WK, Youk JH, Lee TS, Park WH (2004) Macromol Rapid Commun 25:1632–1637

    Article  CAS  Google Scholar 

  28. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Biomacromolecules 11:674–681

    Article  CAS  Google Scholar 

  29. Rojas O, Montero G, Habibi Y (2009) J Appl Polym Sci 113:927–935

    Article  CAS  Google Scholar 

  30. Samir MA, Alloin F, Dufresne A (2005) Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  31. Zoppe JO, Peresin MS, Habibi Y, Venditti R, Rojas OJ (2009) ACS Appl Mater Interfaces 1:1996–2004

    Article  CAS  Google Scholar 

  32. Martínez-Sanz M, Olsson RT, Lopez-Rubio A, Lagaron JM (2011) Cellulose 18:335–347

    Article  Google Scholar 

  33. Habibi Y, Foulon L, Aguie-Beghin V, Molinari M, Douillard R (2007) J Colloid Interface Sci 316:388–397

    Article  CAS  Google Scholar 

  34. Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Mater Lett 62:759–762

    Article  CAS  Google Scholar 

  35. Reneker DH, Chun I (1996) Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  36. Spivak AF, Dzenis YA, Reneker DH (2000) Mech Res Commun 27:37–42

    Article  Google Scholar 

  37. Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670–5703

    Article  CAS  Google Scholar 

  38. Son WK, Youk JH, Lee TS, Park WH (2004) J Polym Sci, Part B: Polym Phys 42:5–11

    Article  CAS  Google Scholar 

  39. Lee YJ, Shin DS, Kwon OW, Park WH, Choi HG, Lee YR, Han SS, Noh SK, Lyoo WS (2007) J Appl Polym Sci 106:1337–1342

    Article  CAS  Google Scholar 

  40. Son WK, Youk JH, Park WH (2004) Biomacromolecules, 197–201

  41. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  42. Du J, Hsieh YL (2009) Cellulose 16:247–260

    Article  CAS  Google Scholar 

  43. Gray D (2008) Cellulose 15(2):297–301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando J. Rojas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallejos, M.E., Peresin, M.S. & Rojas, O.J. All-Cellulose Composite Fibers Obtained by Electrospinning Dispersions of Cellulose Acetate and Cellulose Nanocrystals. J Polym Environ 20, 1075–1083 (2012). https://doi.org/10.1007/s10924-012-0499-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0499-1

Keywords

Navigation