Skip to main content
Log in

Polarization Controlling of Multi Resonant Graphene-Based Microstrip Antenna

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a graphene-based patch antenna is proposed. The antenna structure is designed so that each of the various antenna sections affected by chemical potential changes can provide a certain radiation behavior for the antenna far-field. The main purpose of the design is to control the polarization of the antenna only by changing its graphene layer Fermi energy level, so that its physical structure remains fixed. In this way, it is possible to achieve a wideband antenna with a favorable matching in the frequency range of 0.82 to 1.07 THz. It is possible to control its polarization in three states: the right- and left-hand circular polarization with an axial ratio less than 3 dB for a frequency range of 0.975 to 1.025 THz, and linear polarization in frequency range of 0.82 to 1.07 THz. The important point is that the physical structure of the antenna by adding circular layered patches at its edges provided us with the possibility of achieving a circular polarization, and with the creation of multi resonance behavior in the input impedance, provided the possibility of increasing bandwidth, significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khani S, Danaie M, Rezaei P (2019) Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 14(1):53–62

    Article  CAS  Google Scholar 

  2. Kim WK, Oh J, Yoon HS, Kim SJ, Park JY, Jung J, Jun SC (2019) Impedance variation on lattice misoriented few-layer graphene via layer decoupling. IEEE Trans Nanotechnol 18:55–61

    Article  CAS  Google Scholar 

  3. Srivastava T, Jha R (2018) Black phosphorus: a new platform for gaseous sensing based on surface plasmon resonance. IEEE Photonics Technol Lett 30(4):319–322

    Article  CAS  Google Scholar 

  4. Castellanos-Gomez A (2015) Black phosphorus: narrow gap, wide applications. J Phys Chem Lett 6(21):4280–4291

    Article  CAS  Google Scholar 

  5. Jafari Chashmi M, Rezaei P, Kiani N (2019) Reconfigurable graphene-based v-shaped dipole antenna: from quasi-isotropic to directional radiation pattern. Opt –Int J Light Electron Opt 184:421–427

    Article  CAS  Google Scholar 

  6. Ramazannia Tuloti SH, Rezaei P, Tavakkol Hamedani F (2019) Unit-cell with flexible transmission phase slope for ultra wideband transmitarray antennas. IET Microw Antennas Propag DOI. https://doi.org/10.1049/iet-map.2018.5288

  7. Jafari Chashmi M, Ghobadi H, Oliaei M (2015) Design and fabrication of aperture coupled microstrip increased bandwidth antenna. App Compute Electromagn Soc J 30(10):1109–1114

    Google Scholar 

  8. Ramazannia Tuloti SH, Rezaei P, Tavakkol Hamedani F (2018) High-efficient wideband transmitarray antenna. IEEE Antennas Wireless Propag Lett 17(5):817–820

    Article  Google Scholar 

  9. Fakharian MM, Rezaei P, Orouji AA (2016) Polarization and radiation pattern reconfigurability of a planar monopole-fed loop antenna for GPS application. Radioengineering J 25(4):680–686

    Article  Google Scholar 

  10. Mousavi Z, Rezaei P, Rafii V (2017) Single layer CPSSA array with change polarization diversity in broadband application. Int J RF Microw Comp-Aided Eng 27(4):1–8

    Google Scholar 

  11. Fakharian MM, Rezaei P, Orouji AA (2015) Reconfigurable multilane extended U-slot antenna with switchable polarization for wireless applications. IEEE Antennas Propag Mag 57(2):194–202

    Article  Google Scholar 

  12. Wang G, Zhu J, Wei D, Jiang F, Huang Y (2019) Enhanced air microcavity of channel SPP waveguide HAL by graphene material. Plasmonics 14(2):313–320

    Article  CAS  Google Scholar 

  13. Dehghan M, Moravvej-Farshi MK, Ghaffari-Miab M, Darvish G (2019) Ultra-compact spatial terahertz switch based on graphing plasmonic-coupled waveguide. Plasmonics Available Online:1–11. https://doi.org/10.1007/s11468-019-00921-0

  14. Liu Q, Liu M, Zhan S, Wu L, Xie S, Chen Z, Zhang Y (2018) Tunable Fano resonance based mode interference in waveguide-cavity-graphene hybrid structure. Plasmonics Available Online 14:1005–1011. https://doi.org/10.1007/s11468-018-0887-z

    Article  CAS  Google Scholar 

  15. Zheng P, Yang H, Fan M, Hu G, Zhang R, Yun B, Cui Y (2018) A hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide. Plasmonics 13(6):2029–2035

    Article  CAS  Google Scholar 

  16. Zhu J, Xu Z, Xu W, Fu D, Wei D (2018) Surface plasmon polariton waveguide by bottom and top of graphene. Plasmonics 13(5):1513–1522

    Article  CAS  Google Scholar 

  17. Jaiswal RK, Pundit N, Pathak NP (2019) Center frequency and bandwidth reconfigurable spoof surface plasmonic metamaterial band-pass filter. Plasmonics Available Online:1–8. https://doi.org/10.1007/s11468-019-00948-3

  18. Tavousi A, Mansouri-Birjandi MA, Janfaza M (2019) Graphene nanoribbon assisted refractometer based biosensor for mid-infrared label-free analysis. Plasmonics Available Online 14:1207–1217. https://doi.org/10.1007/s11468-019-00909-w

    Article  CAS  Google Scholar 

  19. Huang Z, Dai Y, Su G, Yan Z, Zhan P, Liu F, Wang Z (2018) Dynamically tunable electromagnetically induced transparency in graphene and split-ring hybrid metamaterial. Plasmonics 13(2):451–457

    Article  CAS  Google Scholar 

  20. Wei B, Jian S (2018) A nanoscale Fano resonator by graphene-gold dipolar interference. Plasmonics 13(6):1889–1895

    Article  CAS  Google Scholar 

  21. Moazami A, Hashemi M, Cheraghi Shirazi N (2019) High efficiency tunable graphene-based plasmonic filter in the THz frequency range. Plasmonics 14(2):359–363

    Article  CAS  Google Scholar 

  22. Jiang L-H, Wang F, Liang R, Wei Z, Meng H, Dong H, Cen H (2018) Tunable terahertz filters based on graphene plasmonic all-dielectric metasurfaces. Plasmonics 13(2):525–530

    Article  CAS  Google Scholar 

  23. Feng Y, Liu Y, Wang X, Dong D, Shi Y, Tang L (2018) Tunable multichannel plasmonic filter based on a single graphene sheet on a Fibonacci quasiperiodic structure. Plasmonics 13(2):653–659

    Article  CAS  Google Scholar 

  24. Deng Q, Shao H, He W, Cheng K, Hu J, Sun B, Wang X, Liu G, Wang J (2018) Adjustable plasmonic multi-channel demultiplexer with graphene sheets and ring resonators. Plasmonics Available Online 14:993–998. https://doi.org/10.1007/s11468-018-0885-1

    Article  CAS  Google Scholar 

  25. Kiani N, Afsahi M (2019) Design and fabrication of a compact SIW diplexer in C-band. Iranian J Electr Electron Eng (IJEEE) 15(2):189–194

    Google Scholar 

  26. Ghasemi M, Choudhury PK, Baqir MA (2019) On the double nano-coned graphite metasurface-based multilane CIC absorber. Plasmonics Available Online 14:1189–1195. https://doi.org/10.1007/s11468-019-00907-y

    Article  CAS  Google Scholar 

  27. Xiong H, Tang M-C, Li M, Li D, Jiang Y-N (2018) Equivalent circuit method analysis of graphene-metamaterial (GM) absorber. Plasmonics 13(3):857–862

    Article  CAS  Google Scholar 

  28. Zhao Z, Li G, Yu F, Yang H, Chen X, Lu W (2018) Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber. Plasmonics 13(6):2267–2272

    Article  CAS  Google Scholar 

  29. Rashiditabar R, Nozhat N, Zare MS (2018) Tunable plasmonic absorber based on TiN-nanosphere liquid crystal hybrid in visible and near-infrared regions. Plasmonics 13(6):1853–1859

    Article  CAS  Google Scholar 

  30. Deng Y-W, Peng L, Liao X, Jiang X (2018) An ultra-broadband terahertz absorber based on coplanar graphene and gold hybridized metasurface. Plasmonics Available Online 14:1057–1061. https://doi.org/10.1007/s11468-018-0893-1

    Article  CAS  Google Scholar 

  31. Sun L-P, Zhai X, Lin Q, Liu G-D, Wang L-L (2018) Tunable nearly perfect absorber based on graphene metamaterials at the mid-infrared region. Plasmonics 13(3):1043–1048

    Article  CAS  Google Scholar 

  32. Luan J, Fan M, Zheng P, Yang H, Hu G, Yun B, Cui Y (2019) Design and optimization of a graphene modulator based on hybrid plasmonic waveguide with double low-index slots. Plasmonics 14(1):133–138

    Article  CAS  Google Scholar 

  33. Wu Y, Qu M, Jiao L, Liu Y (2017) Tunable terahertz filter-integrated quasi-Yagi antenna based on graphene. Plasmonics 12(3):811–817

    Article  CAS  Google Scholar 

  34. Nissiyah GJ, Madhan MG (2018) Graphene-based photoconductive antenna structures for directional terahertz emission. Plasmonics Available Online 14:891–900. https://doi.org/10.1007/s11468-018-0871-7

    Article  CAS  Google Scholar 

  35. Giddens H, Yang L, Tina J, Hao Y (2018) Mid-infrared reflect-array antenna with beam switching enabled by continuous graphene layer. IEEE Photon Technol Lett 30(8):748–751

    Article  CAS  Google Scholar 

  36. Fuscaldo W, Burghignoli P, Baccarrelli P, Galli A (2017) Graphene Fabry-Perot cavity leaky-wave antennas: plasmonic versus non-plasmonic solutions. IEEE Trans Antennas Propag 65(4):1651–1660

    Article  Google Scholar 

  37. Sikdar D, Zhu W, Cheng W, Premaratne M (2015) Substrate-mediated broadband tunability in plasmonic resonances of metal nanoantennas on finite high-permittivity dielectric substrate. Plasmonics 10(6):1663–1673

    Article  CAS  Google Scholar 

  38. Zhu B, Ren G, Gao Y, Wu B, Lian Y, Jian S (2017) Creation of graphene plasmons vortex via cross shape nanoantennas under linearly polarized incidence. Plasmonics 12(3):863–868

    Article  CAS  Google Scholar 

  39. Aditya RANS, Thampy AS (2019) Behavioral and modal analysis of graphene-based polygonal optical antenna for enhanced bio-molecular detection. Plasmonics 14(2):293–302

    Article  CAS  Google Scholar 

  40. Liu H, Sun S, Wu L, Bai P (2014) Optical near-field enhancement with graphene bowtie antennas. Plasmonics 9(4):845–850

    Article  CAS  Google Scholar 

  41. Dash S, Patnaik A (2018) Performance of graphene plasmonic antenna in comparison with their counterparts for low-terahertz applications. Plasmonics 13(6):2353–2360

    Article  CAS  Google Scholar 

  42. Ekşioğlu Y, Cetin AE, Durmaz H (2018) Multi-band plasmonic platform utilizing UT-shaped graphene antenna arrays. Plasmonics 13(3):1081–1088

    Article  CAS  Google Scholar 

  43. Computer Simulation Technology (CST), CST Microwave Studio Ver. 2015. www.cst.com.

  44. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl Phys 103:064302

    Article  CAS  Google Scholar 

  45. Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV (1999) Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys Rev B 60:17136

    Article  CAS  Google Scholar 

  46. Hanson GW (2008) Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56(3):747–757

    Article  Google Scholar 

  47. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  CAS  Google Scholar 

  48. Ryzhii V, Satou A, Otsuji T (2007) Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. J Appl Phys 101:024509

    Article  CAS  Google Scholar 

  49. Falkovsky LA (2007) Unusual field and temperature dependence of the hall effect in graphene. Phys Rev B 75:033409

    Article  CAS  Google Scholar 

  50. Gusynin VP, Sharapov SG, Carbotte JP (2007) Magneto-optical conductivity in graphene. J Phy Condens Matter 19(2):026222

    Article  CAS  Google Scholar 

  51. Thampy AS, Darak MS, Dhamodharan SK (2015) Analysis of graphene based optically transparent patch antenna for terahertz communications. Physica E 66:67–73

    Article  CAS  Google Scholar 

  52. Wibbeler J, Pfeifer G, Hietschold M (1998) Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sens Actuators A Phys 71(1–2):74–80

    Article  CAS  Google Scholar 

  53. Gómez-Díaz JS, Esquius-Morote M, Perruisseau-Carrier J (2013) Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips. Opt Express 21(21):24856–24872

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Semnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Rezaei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Chashmi, M., Rezaei, P. & Kiani, N. Polarization Controlling of Multi Resonant Graphene-Based Microstrip Antenna. Plasmonics 15, 417–426 (2020). https://doi.org/10.1007/s11468-019-01044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01044-2

Keywords

Navigation