Skip to main content
Log in

Organometallic catalysts for intramolecular hydroamination of alkenes

  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

Amines are invaluable precursors and necessary chemical components in industrial settings as well as pharmaceutical industries, making methods for efficient formation of C-N bonds a vital chemical process. Of these methods, the hydroamination of alkenes and alkynes, specifically the addition of an N-H bond across a carbon-carbon π-bond, is especially relevant. The hydroamination reaction is theoretically 100% atom-economical, making it a desirable synthetic route for the formation of C-N bonds. Common synthetic methods for amines are cumbersome and require multiple steps that produce waste products. However, the hydroamination reaction itself has a large negative entropy, requiring the assistance of a catalyst to promote the reaction. As such, current research focuses on the development of organometallic catalysts that can increase the efficacy of hydroamination reactions. Herein, research towards the development of an efficient catalyst for intramolecular hydroamination of alkene is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berndt, E.R., Health Affairs, 2001, vol. 20, p. 100.

    Article  CAS  Google Scholar 

  2. Dugger, R.W., Ragan, J.A., and Ripin, D.H.B., Org. Process Res. Dev., 2005, vol. 9, p. 253.

    Article  CAS  Google Scholar 

  3. Gübitz, G. and Schmid, M.G., Biopharm. Drug Dispos., 2001, vol. 22, p. 291.

    Article  Google Scholar 

  4. Barbosa-Filho, J.M., Piuvezam, M.R., Moura, M.D., Silva, M.S., Lima, K.V.B., da-Cunha, E.V.L., Fechine, I.M., and Takemura, O.S., Revista Brasileira de Farmacognosia, 2006, vol. 16, p. 109.

    Article  CAS  Google Scholar 

  5. Newman, D.J., Cragg, G.M., and Snader, K.M., J. Nat. Prod., 2003, vol. 66, p. 1022.

    Article  CAS  Google Scholar 

  6. Mander, L.N. and McLachlan, M.M., J. Am. Chem. Soc., 2003, vol. 125, p. 2400.

    Article  CAS  Google Scholar 

  7. Yang, P. and Zhou, Y. The enantioselective total synthesis of alkaloid (-)-galipeine, Tetrahedron: Asymmetry, 2004, vol. 15, p. 1145.

    Article  CAS  Google Scholar 

  8. Larock, R.C., Comprehensive Organic Transformations: A Guide to Functional Group Preparations, USA: John Wiley and Sons, Inc., 1999, p. 2583.

    Google Scholar 

  9. Salvatore, R.N., Yoon, C.H., and Jung, K.W., Tetrahedron, 2001, vol. 57, p. 7785.

    Article  CAS  Google Scholar 

  10. Ram, S. and Ehrenkaufer, R.E., Tetrahedron Lett., 1984, vol. 25, p. 3415.

    Article  CAS  Google Scholar 

  11. Amundsen, L.H. and Nelson, L.S., J. Am. Chem. Soc., 1951, vol. 73, p. 242.

    Article  CAS  Google Scholar 

  12. Micovic, V. and Mihailovic, M., J. Org. Chem., 1953, vol. 18, p. 1190.

    Article  CAS  Google Scholar 

  13. Abdel-Magid, A., Carson, K.G., Harris, B.D., Maryanoff, C.A., and Shah, R.D., J. Org. Chem., 1996, vol. 61, p. 3849.

    Article  CAS  Google Scholar 

  14. Apodaca, R. and Xiao, W., Org. Lett., 2001, vol. 3, p. 1745.

    Article  CAS  Google Scholar 

  15. Raspoet, G., Nguyen, M.T., McGarraghy, M., and Hegarty, A.F., J. Org. Chem., 1998, vol. 63, p. 6867.

    Article  CAS  Google Scholar 

  16. Saunders, J.H. and Slocombe, R.J., Chem. Rev., 1948, vol. 43, p. 203.

    Article  CAS  Google Scholar 

  17. Beller, M., Trauthwein, H., Eichberger, M., Breindl, C., Herwig, J., Müller, T.E., and Thiel, O.R., Chemistry A European Journal, 1999, vol. 5, p. 1306.

    Article  CAS  Google Scholar 

  18. Senn, H.M., Blochl, P.E., and Togni, A., J. Am. Chem. Soc., 2000, vol. 122, p. 4098.

    Article  CAS  Google Scholar 

  19. MacDonald, M.J., Schipper, D.J., Ng, P.J., Moran, J., and Beauchemin, A.M., J. Am. Chem. Soc., 2011, vol. 133, p. 20100.

    Article  CAS  Google Scholar 

  20. Severin, R. and Doye, S., Chem. Soc. Rev., 2007, vol. 36, p. 1407.

    Article  CAS  Google Scholar 

  21. Müller, T.E., Hultzsch, K.C., Yus, M., Foubelo, F., and Tada, M., Chem. Rev., 2008, vol. 108, p. 3795.

    Article  Google Scholar 

  22. Fujita, H., Tokuda, M., Nitta, M., and Suginome, H., Tetrahedron Lett., 1992, vol. 33, p. 6359.

    Article  CAS  Google Scholar 

  23. Gagne, M.R., Stern, C.L., and Marks, T.J., J. Am. Chem. Soc., 1992, vol. 114, p. 275.

    Article  CAS  Google Scholar 

  24. Hong, S. and Marks, T.J., Acc. Chem. Res., 2004, vol. 37, p. 673.

    Article  CAS  Google Scholar 

  25. Li, Y. and Marks, T.J., J. Am. Chem. Soc., 1996, vol. 118, p. 9295.

    Article  Google Scholar 

  26. Crimmin, M.R., Casely, I.J., and Hill, M.S., J. Am. Chem. Soc., 2005, vol. 127, p. 2042.

    Article  CAS  Google Scholar 

  27. Leitch, D.C., Payne, P.R., Dunbar, C.R., and Schafer, L.L., J. Am. Chem. Soc., 2009, vol. 131, p. 18246.

    Article  CAS  Google Scholar 

  28. Reznichenko, A.L. and Hultzsch, K.C., Organometallics, 2010, vol. 29, p. 24.

    Article  CAS  Google Scholar 

  29. Thomson, R.K., Bexrud, J.A., and Schafer, L.L., Organometallics, 2006, vol. 25, p. 4069.

    Article  CAS  Google Scholar 

  30. Hesp, K.D., Tobisch, S., and Stradiotto, M., J. Am. Chem. Soc., 2010, vol. 132, p. 413.

    Article  CAS  Google Scholar 

  31. Julian, L.D. and Hartwig, J.F., J. Am. Chem. Soc., 2010, vol. 132, p. 13813.

    Article  CAS  Google Scholar 

  32. Liu, Z., Yamamichi, H., Madrahimov, S.T., and Hartwig, J.F., J. Am. Chem. Soc., 2011, vol. 133, p. 2772.

    Article  CAS  Google Scholar 

  33. Takemiya, A. and Hartwig, J.F., J. Am. Chem. Soc., 2006, vol. 128, p. 6042.

    Article  CAS  Google Scholar 

  34. Utsunomiya, M., Kuwano, R., Kawatsura, M., and Hartwig, J.F., J. Am. Chem. Soc., 2003, vol. 125, p. 5608.

    Article  CAS  Google Scholar 

  35. Taylor, J.G., Whittall, N., and Hii, K.K., Org. Lett., 2006, vol. 8, p. 3561.

    Article  CAS  Google Scholar 

  36. Roveda, J., Clavette, C., Hunt, A.D., Gorelsky, S.I., Whipp, C.J., and Beauchemin, A.M., J. Am. Chem. Soc., 2009, vol. 131, p. 8740.

    Article  CAS  Google Scholar 

  37. Layer, R.W., Chem. Rev., 1963, vol. 63, p. 489.

    Article  CAS  Google Scholar 

  38. Craig, N.L., Cohen-Fix, O., Green, R., Greider, C.W., Storz, G., and Wolberger, C., Molecular biology: principles of genome function, in The Chemical Basis of Life, New York: Oxford University Press, 2010, p. 83.

    Google Scholar 

  39. Arredondo, V.M., McDonald, F.E., and Marks, T.J., Organometallics, 1999, vol. 18, p. 1949.

    Article  CAS  Google Scholar 

  40. Arredondo, V.M., Tian, S., McDonald, F.E., and Marks, T.J., J. Am. Chem. Soc., 1999, vol. 121, p. 3633.

    Article  CAS  Google Scholar 

  41. Dang, Q., Liu, Y., and Erion, M.D., J. Am. Chem. Soc., 1999, vol. 121, p. 5833.

    Article  CAS  Google Scholar 

  42. Ryu, J., Marks, T.J., and McDonald, F.E., J. Org. Chem., 2004, vol. 69, p. 1038.

    Article  CAS  Google Scholar 

  43. Mauermann, H., Swepston, P.N., and Marks, T.J., Organometallics, 1985, vol. 4, p. 200.

    Article  CAS  Google Scholar 

  44. Gagne, M.R., Nolan, S.P., and Marks, T.J., Organometallics, 1990, vol. 9, 1716.

  45. Giardello, M.A., Conticello, V.P., Brard, L., Sabat, M., Rheingold, A.L., Stern, C.L., and Marks, T.J., J. Am. Chem. Soc., 1994, vol. 116, p. 10212.

    Article  CAS  Google Scholar 

  46. Hong, S., Tian, S., Metz, M.V., and Marks, T.J., J. Am. Chem. Soc., 2003, vol. 125, p. 14768.

    Article  CAS  Google Scholar 

  47. Riegert, D., Collin, J., Meddour, A., Schulz, E., and Trifonov, A., J. Org. Chem., 2006, vol. 71, p. 2514.

    Article  CAS  Google Scholar 

  48. Hong, S. and Marks, T.J., J. Am. Chem. Soc., 2002, vol. 124, p. 7886.

    Article  CAS  Google Scholar 

  49. Hong, S., Kawaoka, A.M., and Marks, T.J., J. Am. Chem. Soc., 2003, vol. 125, p. 15878.

    Article  CAS  Google Scholar 

  50. Bruno, J.W., Marks, T.J., and Morss, L.R., J. Am. Chem. Soc., 1983, vol. 105, p. 6824.

    Article  CAS  Google Scholar 

  51. Douglass, M.R., Ogasawara, M., Hong, S., Metz, M.V., and Marks, T.J., Organometallics, 2002, vol. 21, p. 283.

    Article  CAS  Google Scholar 

  52. Beesley, R.M., Ingold, C.K., and Thorpe, J.F., J. Chem. Soc. Trans., 1915, vol. 107, p. 1080.

    Article  CAS  Google Scholar 

  53. Lauterwasser, F., Hayes, P.G., Bräase, S., Piers, W.E., and Schafer, L.L., Organometallics, 2004, vol. 23, p. 2234.

    Article  CAS  Google Scholar 

  54. Bexrud, J.A., Beard, J.D., Leitch, D.C., and Schafer, L.L., Org. Lett., 2005, vol. 7, p. 1959.

    Article  CAS  Google Scholar 

  55. Hoover, J.M., Petersen, J.R., Pikul, J.H., and Johnson, A.R., Organometallics, 2004, vol. 23, p. 4614.

    Article  CAS  Google Scholar 

  56. Bauer, E.B., Andavan, G.T.S., Hollis, T.K., Rubio, R.J., Cho, J., Kuchenbeiser, G.R., Helgert, T.R., Letko, C.S., and Tham, F.S., Org. Lett., 2008, vol. 10, p. 1175.

    Article  CAS  Google Scholar 

  57. Ohmiya, H., Moriya, T., and Sawamura, M., Org. Lett., 2009, vol. 11, p. 2145.

    Article  CAS  Google Scholar 

  58. Burling, S., Field, L.D., and Messerle, B.A., Organometallics, 2000, vol. 19, p. 87.

    Article  CAS  Google Scholar 

  59. Hartung, C.G., Tillack, A., Trauthwein, H., and Beller, M., J. Org. Chem., 2001, vol. 66, p. 6339.

    Article  CAS  Google Scholar 

  60. Burling, S., Field, L.D., Messerle, B.A., and Turner, P., Organometallics, 2004, vol. 23, p. 1714.

    Article  CAS  Google Scholar 

  61. Burling, S., Field, L.D., Messerle, B.A., and Rumble, S.L., Organometallics, 2007, vol. 26, p. 4335.

    Article  CAS  Google Scholar 

  62. Liu, Z. and Hartwig, J.F., J. Am. Chem. Soc., 2008, vol. 130, p. 1570.

    Article  CAS  Google Scholar 

  63. Bender, C.F. and Widenhoefer, R.A., J. Am. Chem. Soc., 2005, vol. 127, p. 1070.

    Article  CAS  Google Scholar 

  64. Bender, C.F., Hudson, W.B., and Widenhoefer, R.A., Organometallics, 2008, vol. 27, p. 2356.

    Article  CAS  Google Scholar 

  65. Michael, F.E. and Cochran, B.M., J. Am. Chem. Soc., 2006, vol. 128, p. 4246.

    Article  CAS  Google Scholar 

  66. Toyooka, N., Fukutome, A., Nemoto, H., Daly, J.W., Spande, T.F., Garraffo, H.M., and Kaneko, T., Org. Lett., 2002, vol. 4, p. 1715.

    Article  CAS  Google Scholar 

  67. Yu, J., Wearing, X.Z., and Cook, J.M., Tetrahedron Lett., 2003, vol. 44, p. 543.

    Article  CAS  Google Scholar 

  68. Novak, B.H., Hudlicky, T., Reed, J.W., Mulzer, J., and Trauner, D., Curr. Org. Chem., 2000, vol. 4, p. 343.

    Article  CAS  Google Scholar 

  69. Voet, D., Voet, J.G., and Pratt, C.W., Fundamentals of biochemistry: life at the molecular level, hoboken, in Amino Acid Metabolism, NJ: John Wiley and Sons, 2008, p. 732.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan A. Patton.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patton, D.A., Cremeens, M.E. Organometallic catalysts for intramolecular hydroamination of alkenes. Ref. J. Chem. 4, 1–20 (2014). https://doi.org/10.1134/S207997801304002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207997801304002X

Keywords

Navigation