Skip to main content
Log in

List-Decoding Barnes–Wall Lattices

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

The question of list-decoding error-correcting codes over finite fields (under the Hamming metric) has been widely studied in recent years. Motivated by the similar discrete linear structure of linear codes and point lattices in \({\mathbb{R}^{N}}\), and their many shared applications across complexity theory, cryptography, and coding theory, we initiate the study of list decoding for lattices. Namely: for a lattice \({\mathcal{L}\subseteq \mathbb{R}^N}\), given a target vector \({r \in \mathbb{R}^N}\) and a distance parameter d, output the set of all lattice points \({w \in \mathcal{L}}\) that are within distance d of r.

In this work, we focus on combinatorial and algorithmic questions related to list decoding for the well-studied family of Barnes–Wall lattices. Our main contributions are twofold:

  1. 1.

    We give tight combinatorial bounds on the worst-case list size, showing it to be polynomial in the lattice dimension for any error radius bounded away from the lattice’s minimum distance (in the Euclidean norm).

  2. 2.

    We use our combinatorial bounds to generalize the unique-decoding algorithm of Micciancio and Nicolosi (IEEE International Symposium on Information Theory 2008) to work beyond the unique-decoding radius and still run in polynomial time up to the list-decoding radius. Just like the Micciancio–Nicolosi algorithm, our algorithm is highly parallelizable, and with sufficiently many processors, it can run in parallel time only poly-logarithmic in the lattice dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dakshi Agrawal, Alexander Vardy (2000) Generalized minimum distance decoding in Euclidean space: Performance analysis. IEEE Transaction on Information Theory 46(1): 60–83

    Article  MathSciNet  MATH  Google Scholar 

  • Adi Akavia, Shafi Goldwasser & Schmuel Safra (2003). Proving Hard-Core Predicates Using List Decoding. In IEEE Symposium on Foundations of Computer Science, 146–157.

  • Ian F. Blake Amir H. Banihashemi (1998). Trellis Complexity and Minimal Trellis Diagrams of Lattices. IEEE Transaction on Information Theory 44(5), 1829–1847.

  • Barnes E. S., Wall G. E. (1959) Some extreme forms defined in terms of Abelian groups. Journal of the Australian Mathematical Society 1(01): 47–63

    Article  MathSciNet  MATH  Google Scholar 

  • Bela Bollobás (1986). Combinatorics. Cambridge University Press, Cambridge, U.K

  • Henry Cohn, Nadia Heninger (2015) Ideal forms of Coppersmith’s theorem and Guruswami-Sudan list decoding. Advances in Mathematics of Communications 9(3): 311–339

    Article  MathSciNet  MATH  Google Scholar 

  • John H. Conway & Neil J. A. Sloane (1998). Sphere Packings, Lattices and Groups. Springer-Verlag, New York.

  • Don Coppersmith (2001). Finding Small Solutions to Small Degree Polynomials. In Cryptography and Lattices, International Conference, 20–31.

  • Irit Dinur, Elena Grigorescu, Swastik Kopparty & Madhu Sudan (2008). Decodability of group homomorphisms beyond the Johnson bound. In ACM Symposium on Theory of Computing, 275–284.

  • Ilya Dumer, Gregory Kabatiansky A., Cédric Tavernier (2008) List Decoding of Biorthogonal Codes and the Hadamard Transform With Linear Complexity. IEEE Transactions on Information Theory 54(10): 4488–4492

    Article  MathSciNet  MATH  Google Scholar 

  • Ilya Dumer, Rafail Krichevskiy E. (2000) Soft-decision majority decoding of Reed-Muller codes. IEEE Transactions on Information Theory 46(1): 258–264

    Article  MathSciNet  MATH  Google Scholar 

  • Ilya Dumer, Daniele Micciancio, Madhu Sudan (2003) Hardness of approximating the minimum distance of a linear code. IEEE Transaction on Information Theory 49(1): 22–37

    Article  MathSciNet  MATH  Google Scholar 

  • Ilya Dumer, Kirill Shabunov (2006a) Recursive error correction for general Reed-Muller codes. Discrete Applied Mathematics 154(2): 253–269

    Article  MathSciNet  MATH  Google Scholar 

  • Ilya Dumer, Kirill Shabunov (2006b) Soft-decision decoding of Reed-Muller codes: recursive lists. IEEE Transactions on Information Theory 52(3): 1260–1266

    Article  MathSciNet  MATH  Google Scholar 

  • Peter Elias (1957). List decoding for noisy channels. Technical Report 335, Research Laboratory of Electronics, MIT.

  • David Forney G. (1988) Coset codes-II: Binary lattices and related codes. IEEE Transactions on Information Theory 34(5): 1152–1187

    Article  MathSciNet  MATH  Google Scholar 

  • David Forney G., Alexander Vardy (1996) Generalized minimum-distance decoding of Euclidean-space codes and lattices. IEEE Transactions on Information Theory 42(6): 1992–2026

    Article  MathSciNet  MATH  Google Scholar 

  • Rafaël Fourquet, Cédric Tavernier (2008) An improved list decoding algorithm for the second order Reed-Muller codes and its applications. Designs, Codes and Cryptography 49(1–3): 323–340

    MathSciNet  MATH  Google Scholar 

  • Anna C. Gilbert, Sudipto Guha, Piotr Indyk, S. Muthukrishnan & Martin Strauss (2002). Near-optimal sparse Fourier representations via sampling. In ACM Symposium on the Theory of Computing, 152–161.

  • Oded Goldreich & Leonid A. Levin (1989). A hard-core predicate for all one-way functions. In In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, 25–32.

  • Parikshit Gopalan, Venkatesan Guruswami, Prasad Raghavendra (2011) List Decoding Tensor Products and Interleaved Codes. SIAM Journal of Computing 40(5): 1432–1462

    Article  MathSciNet  MATH  Google Scholar 

  • Parikshit Gopalan, Adam R. Klivans & David Zuckerman (2008). List-decoding Reed-Muller codes over small fields. In ACM Symposium on the Theory of Computing, 265–274.

  • Elena Grigorescu & Chris Peikert (2012). List Decoding Barnes-Wall Lattices. In IEEE Conference on Computational Complexity, 316–325.

  • Venkatesan Guruswami (2004). List Decoding of Error-Correcting Codes (Winning Thesis of the 2002 ACM Doctoral Dissertation Competition), volume 3282 of Lecture Notes in Computer Science. Springer.

  • Venkatesan Guruswami (2006). Algorithmic Results in List Decoding. Foundations and Trends in Theoretical Computer Science 2(2).

  • Venkatesan Guruswami (2010). Bridging Shannon and Hamming: List Error-Correction with Optimal Rate. ICM Invited Survey.

  • Venkatesan Guruswami & Atri Rudra (2006). Explicit capacity-achieving list-decodable codes. In ACM Symposium on the Theory of Computing, 1–10.

  • Venkatesan Guruswami, Madhu Sudan (1999) Improved decoding of Reed-Solomon and Algebraic-geometric codes. IEEE Transactions on Information Theory 45: 1757–1767

    Article  MathSciNet  MATH  Google Scholar 

  • Venkatesan Guruswami & Madhu Sudan (2001). Extensions to the Johnson Bound. Manuscript. Available from http://people.csail.mit.edu/madhu/papers/johnson.ps.

  • Venkatesan Guruswami, Christopher Umans & Salil P. Vadhan (2009). Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes. Journal of the ACM 56(4).

  • Ishay Haviv, Oded Regev (2012) Tensor-based Hardness of the Shortest Vector Problem to within Almost Polynomial Factors. Theory of Computing 8(1): 513–531

    Article  MathSciNet  MATH  Google Scholar 

  • Ravi Kannan (1987) Minkowski’s Convex Body Theorem and Integer Programming. Mathematics of Operations Research 12(3): 415–440

    Article  MathSciNet  MATH  Google Scholar 

  • Tali Kaufman, Shachar Lovett & Ely Porat (2010). Weight Distribution and List-Decoding Size of Reed- Muller Codes. In Innovations in Computer Science, 422–433.

  • Eyal Kushilevitz, Yishay Mansour (1993) Learning Decision Trees Using the Fourier Spectrum. SICOMP: SIAM Journal on Computing 22(6): 1331–1348

    Article  MathSciNet  MATH  Google Scholar 

  • Florence J. MacWilliams & Neil J. A. Sloane (1981). The Theory of Error-Correcting Codes. Elsevier/North-Holland, Amsterdam.

  • Daniele Micciancio (2012) Inapproximability of the Shortest Vector Problem: Toward a Deterministic Reduction. Theory of Computing 8(1): 487–512

    Article  MathSciNet  MATH  Google Scholar 

  • Daniele Micciancio & Shafi Goldwasser (2002). Complexity of Lattice Problems: a cryptographic perspective, volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, Massachusetts.

  • Daniele Micciancio & Antonio Nicolosi (2008). Efficient Bounded Distance Decoder for Barnes-Wall Lattices. In IEEE International Symposium on Information Theory, 2484–2488.

  • Muller D. E. (1954) Application of Boolean algebra to switching circuit design and to error detection. IEEE Transactions on Computers 3: 6–12

    Google Scholar 

  • Gabriele Nebe, Eric M. Rains & Neil J. A. Sloane (2001). The Invariants of the Clifford Groups. Designs, Codes and Cryptography 24(1), 99–122.

  • Farzad Parvaresh & Alexander Vardy (2005). Correcting Errors Beyond the Guruswami-Sudan Radius in Polynomial Time. In Symposium on Foundations of Computer Science, 285–294. Symposium on Foundations of Computer Science.

  • Ruud Pellikaan, Xin-Wen Wu (2004) List decoding of q-ary Reed-Muller codes. IEEE Transactions on Information Theory 50(4): 679–682

    Article  MathSciNet  MATH  Google Scholar 

  • Xavier Pujol & Damien Stehlé (2008). Rigorous and Efficient Short Lattice Vectors Enumeration. In Advances in Cryptology - ASIACRYPT 2008, 14th International Conference on the Theory and Application of Cryptology and Information Security, 390–405.

  • M. Ran & J. Snyders (1998). Efficient decoding of the Gosset, Coxeter-Todd and the Barnes-Wall lattices. In IEEE International Symposium on Information Theory, 92.

  • Irving Reed S. (1954) A class of multiple-error-correcting codes and the decoding scheme. IEEE Transactions on Information Theory 4: 38–49

    MathSciNet  Google Scholar 

  • Amir J. Salomon & Ofer Amrani (2005). Augmented product codes and lattices: Reed-Muller codes and Barnes-Wall lattices. IEEE Transactions on Information Theory 51(11), 3918–3930.

  • Madhu Sudan (1997) Decoding of Reed Solomon Codes beyond the Error- Correction Bound. Journal of Complexity 13(1): 180–193

    Article  MathSciNet  MATH  Google Scholar 

  • Madhu Sudan (2000) List decoding: algorithms and applications. SIGACT News 31(1): 16–27

    Article  MATH  Google Scholar 

  • Madhu Sudan (2001). Algorithmic Introduction to Coding Theory, Lecture Notes. Available from http://people.csail.mit.edu/madhu/FT01/.

  • Madhu Sudan, Luca Trevisan, Salil Vadhan P. (2001) Pseudorandom Generators without the XOR Lemma. Journal of Computer and System Sciences 62(2): 236–266

    Article  MathSciNet  MATH  Google Scholar 

  • Amnon Ta-Shma & David Zuckerman (2001). Extractor codes. In ACM Symposium on Theory of Computing, 193–199.

  • Luca Trevisan (2001) Extractors and pseudorandom generators. Journal of the ACM 48(4): 860–879

    Article  MathSciNet  MATH  Google Scholar 

  • John M. Wozencraft (1958). List Decoding. Quarterly Progress Report, Research Laboratory of Electronics, MIT 48, 90–95.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Grigorescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorescu, E., Peikert, C. List-Decoding Barnes–Wall Lattices. comput. complex. 26, 365–392 (2017). https://doi.org/10.1007/s00037-016-0151-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-016-0151-x

Keywords

Subject classification

Navigation