Skip to main content
Log in

Ability of Three Kind of Imidazole Dipeptides, Carnosine, Anserine, and Balenine, to Interact with Unsaturated Fatty Acid-Derived Aldehydes and Carbohydrate-Derived Aldehydes

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Imidazole dipeptides (IDPs) such as carnosine (CAR), anserine (ANS), and balenine (BAL) are widely distributed in the skeletal muscle of vertebrates. Recently, several studies have revealed that CAR plays an important role in the detoxification of cytotoxic aldehydes arising from the peroxide of unsaturated fatty acids and carbohydrate metabolite. Although intensive studies on the detoxification of aldehydes by CAR have been performed, few studies have focused on the effects of detoxification by ANS and BAL. To determine the potential of minor IDPs such as ANS and BAL to react with cytotoxic aldehydes, the present study was established to investigate the consumption of IDP after co-incubation with cytotoxic aldehydes using high-performance liquid chromatography (HPLC). In the case of unsaturated fatty acid-derived aldehydes such as 4-hydroxy-2-trans-nonenal (from n-6 fatty acid) and 4-hydroxy-2-trans-hexenal (from n-3 fatty acid), ANS and CAR decreased considerably after co-incubation, but BAL did not. In the case of 3-deoxyglucosone and methylglyoxal as carbohydrate metabolites, no IDPs decreased after co-incubation; however, the absorbance at 336 nm of the CAR and BAL mixtures increased dramatically in a time-dependent manner. In the case of glyceraldehyde, which is also a carbohydrate metabolite, all IDPs, especially BAL, decreased after co-incubation and a new peak, surmised to represent an IDP-glyceraldehyde adduct, appeared on the HPLC chromatogram. These results can help explain the unique function and behavior of ANS and BAL in specific species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 18K05521. The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryusuke Tanaka.

Ethics declarations

Conflict of interest

Akihiro Mori, Hideo Hatate, and Ryusuke Tanaka declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not describe any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, A., Hatate, H. & Tanaka, R. Ability of Three Kind of Imidazole Dipeptides, Carnosine, Anserine, and Balenine, to Interact with Unsaturated Fatty Acid-Derived Aldehydes and Carbohydrate-Derived Aldehydes. Int J Pept Res Ther 26, 1651–1660 (2020). https://doi.org/10.1007/s10989-019-09975-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-09975-4

Keywords

Navigation