Skip to main content
Log in

Multiplicative middle convolution for KZ equations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We extend the middle convolution for monodromy of Fuchsian ordinary differential equations due to Katz to an operation for monodromy of KZ equations. This operation, also called the middle convolution, gives a monodromy of KZ equation obtained by the additive middle convolution. Since the fundamental group of the domain of definition of KZ equation is the pure braid group, our middle convolution also gives a recursive way of constructing irreducible representations of the pure braid group. Several applications are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Artin, E.: Theory of braids. Ann. Math. 48, 101–126 (1947)

    Article  MathSciNet  Google Scholar 

  2. Aomoto, K.: Gauss–Manin connection of integral of difference products. J. Math. Soc. Jpn. 39, 191–208 (1987)

    Article  MathSciNet  Google Scholar 

  3. Birman, J.S.: Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies, vol. 82. Princeton University Press, Princeton (1974)

    Google Scholar 

  4. Dettweiler, M., Reiter, S.: An algorithm of Katz and its application to the inverse Galois problem. J. Symb. Comput. 30, 761–798 (2000)

    Article  MathSciNet  Google Scholar 

  5. Dettweiler, M., Reiter, S.: Middle convolution of Fuchsian systems and the construction of rigid differential systems. J. Algebra 318, 1–24 (2007)

    Article  MathSciNet  Google Scholar 

  6. Hansen, V.L.: Braids and Coverings, London Mathematical Society Student Texts, vol. 18. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  7. Haraoka, Y.: Middle convolution for completely integrable systems with logarithmic singularities along hyperplane arrangements. Adv. Stud. Pure Math. 62, 109–136 (2012)

    Article  MathSciNet  Google Scholar 

  8. Haraoka, Y.: Holonomic systems, “Analytic, Algebraic and Geometric Aspects of Differential Equations”, Trends in Mathematics, Birkhäuser, 59-87 (2017)

  9. Haraoka, Y., Hamaguchi, S.: Topological theory for Selberg type integral associated with rigid Fuchsian systems. Math. Ann. 353, 1239–1271 (2012)

    Article  MathSciNet  Google Scholar 

  10. Haraoka, Y., Kikukawa, T.: Rigidity of monodromies for Appell’s hypergeometric functions. Opusc. Math. 35, 567–594 (2015)

    Article  MathSciNet  Google Scholar 

  11. Katz, N.M.: Rigid Local Systems, Annals of Mathematics Studies, vol. 139. Princeton University Press, Princeton (1996)

    Google Scholar 

  12. Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino models in two dimensions. Nucl. Phys. B 247, 83–103 (1984)

    Article  MathSciNet  Google Scholar 

  13. Kohno, T.: Homological representations of braid groups and KZ connections. J. Singul. 5, 94–108 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Krammer, D.: Braid groups are linear. Ann. Math. 155, 131–156 (2002)

    Article  MathSciNet  Google Scholar 

  15. Marin, I.: Sur les représentations de Krammer génériques. Ann. Inst. Fourier 57, 1883–1925 (2007)

    Article  MathSciNet  Google Scholar 

  16. Mimachi, K.: Reducibility and irreducibility of the Gauss-Manin system associated with a Selberg type integral. Nagoya Math. J. 132, 43–62 (1993)

    Article  MathSciNet  Google Scholar 

  17. Mimachi, K.: Homological representations of the Iwahori-Hecke algebra associated with a Selberg-type integral. Int. Math. Res. Not. 2005, 2031–2057 (2005)

    Article  MathSciNet  Google Scholar 

  18. Oshima, T.: Fractional calculus of Weyl algebra and Fuchsian differential equations, MSJ Memoirs, 28. Mathematical Society of Japan, Tokyo (2012)

    MATH  Google Scholar 

  19. Oshima, T.: Transformations of KZ type equations. RIMS Kôkûroku Bessatsu B61, 141–161 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Schechtman, V.V., Varchenko, A.N.: Hypergeometric solutions of Knizhnik-Zamolodchikov equations. Lett. Math. Phys. 20, 279–283 (1990)

    Article  MathSciNet  Google Scholar 

  21. Schechtman, V.V., Varchenko, A.N.: Arrangements of hyperplanes and Lie algebra homology. Invent. Math. 106, 139–194 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshishige Haraoka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the JSPS grant-in-aid for scientific research B, no. 15H03628.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haraoka, Y. Multiplicative middle convolution for KZ equations. Math. Z. 294, 1787–1839 (2020). https://doi.org/10.1007/s00209-019-02322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02322-9

Keywords

Mathematics Subject Classification

Navigation