Skip to main content
Log in

Circumbinary Planetary Systems in the Solar Neighborhood: Stability and Habitability

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The radii of the inner and outer boundaries of the circumbinary habitable zone (CBHZ) and the radii of the circumbinary chaotic zone (CBCZ) have been calculated for close binary stars in the solar neighborhood with sufficient catalogue data. A subclass of binaries for which the CBCZ boundary is within the CBHZ boundaries (the CBCZ radius is larger than the inner CBHZ radius, but smaller than the outer CBHZ radius) has been identified for the first time: M4-V69, HATS551-027, EZ Aqr A–C, 38 Cas, HD 2070, HD 15064, HD 28394, HD 160346, and HD 181602. Since, according to present-day theories and observational data, the probability of finding planets at the CBCZ boundary is high, one might expect the presence of potentially habitable circumbinary planets in the planetary systems of the binary stars revealed in this way. For the stars CM Dra, WTS 19c-3-01405, and LP 661-13 the CBCZ radius is smaller than the radius of the inner CBHZ boundary, but planets may be present around them in outer stable orbits resonant with the orbits of planets near the CBCZ boundary. Therefore, all of the binaries of these types revealed for the first time are of considerable interest for future observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Barclay, J. Pepper, and E. V. Quintana, Astrophys. J. Suppl. Ser. 239, 2 (2018).

    Article  ADS  Google Scholar 

  2. J. Birkby, B. Nefs, S. Hodgkin, et al., Mon. Not. R. Astron. Soc. 426, 1507 (2012).

    Article  ADS  Google Scholar 

  3. A. G. A. Brown, A. Vallenari, T. Prusti, J. de Bruijne, F. Mignard, R. Drimmel, et al. (Gaia Collab.), Astron. Astrophys. 595, 2 (2016).

    Google Scholar 

  4. M. Cuntz, Astrophys. J. 780, A14 (2014).

    Article  ADS  Google Scholar 

  5. M. Cuntz, Astrophys. J. 798, 101 (2015).

    Article  ADS  Google Scholar 

  6. M. Cuntz and R. Bruntz, in Cool Stars, Stellar Systems, and the Sun, Proceedings of the 18th Cambridge Workshop, Ed. by G. van Belle and H. Harris (Proc. Lowell Observatory, Flagstaff, 2014), p. 845.

  7. M. Cuntz and Z. Wang, Res. Not. Am. Astron. Soc. 2, 19 (2018).

    ADS  Google Scholar 

  8. X. Delfosse, T. Forveille, S. Udry, et al., Astron. Astrophys. 350, 39 (1999).

    ADS  Google Scholar 

  9. J. A. Dittmann, J. M. Irwin, D. Charbonneau, et al., Astrophys. J. 836, 124 (2017).

    Article  ADS  Google Scholar 

  10. A. Duquennoy and M. Mayor, Astron. Astrophys. 248, 485 (1991).

    ADS  Google Scholar 

  11. R. Dvorak, Celest. Mech. 34, 369 (1984).

    Article  ADS  Google Scholar 

  12. S. Eggl, in Handbook of Exoplanets, Ed. by H. J. Deeg and J. A. Belmonte (Springer Int., Switzerland, 2018), p. 1.

  13. Z. Eker, S. Bilir, F. Soydugan, et al., Publ. Astron. Soc. Austral. 31, e024 (2014).

    Article  ADS  Google Scholar 

  14. Z. Eker, F. Soydugan, E. Soydugan, et al., Astron. J. 149, 131 (2015).

    Article  ADS  Google Scholar 

  15. M. J. Holman and P. A. Wiegert, Astron. J. 117, 621 (1999).

    Article  ADS  Google Scholar 

  16. L. G. Jaime, B. Pichardo, and L. Aguilar, Mon. Not. R. Astron. Soc. 427, 2723 (2012).

    Article  ADS  Google Scholar 

  17. L. G. Jaime, L. Aguilar, and B. Pichardo, Mon. Not. R. Astron. Soc. 443, 260 (2014).

    Article  ADS  Google Scholar 

  18. J. F. Kasting, D. P. Whitmire, and R. T. Reynolds, Icarus 101, 108 (1993).

    Article  ADS  Google Scholar 

  19. R. K. Kopparapu, R. Ramirez, J. F. Kasting, et al., Astrophys. J. 765, 131 (2013).

    Article  ADS  Google Scholar 

  20. R. K. Kopparapu, R. Ramirez, J. SchottelKotte, et al., Astrophys. J. Lett. 787, L29 (2014).

    Article  ADS  Google Scholar 

  21. V. Kostov, in Proceedings of the 30th IAU GA, Vienna, 2018. https://astronomy2018.univie.ac.at/division-days/ddf/.

    Google Scholar 

  22. L. Lindegren, U. Lammers, U. Bastian, et al., Astron. Astrophys. 595, 4 (2016).

    Article  Google Scholar 

  23. F. S. Masset, A. Morbidelli, A. Crida, and J. Ferreira, Astrophys. J. 642, 478 (2006).

    Article  ADS  Google Scholar 

  24. S. Meschiari, Astrophys. J. 752, 71 (2012).

    Article  ADS  Google Scholar 

  25. S. Meschiari, Astrophys. J. 790, 41 (2014).

    Article  ADS  Google Scholar 

  26. T. W. A. Müller and N. Haghighipour, Astrophys. J. 782, 26 (2014).

    Article  ADS  Google Scholar 

  27. S.-J. Paardekooper, Z. M. Leinhardt, T. Thébault, and C. Baruteau, Astrophys. J. 754, L16 (2012).

    Article  ADS  Google Scholar 

  28. B. Pichardo, L. S. Sparke, and L. A. Aguilar, Mon. Not. R. Astron. Soc. 359, 521 (2005).

    Article  ADS  Google Scholar 

  29. B. Pichardo, L. S. Sparke, and L. A. Aguilar, Mon. Not. R. Astron. Soc. 391, 815 (2008).

    Article  ADS  Google Scholar 

  30. A. Pierens and R. P. Nelson, Astron. Astrophys. 472, 993 (2007).

    Article  ADS  Google Scholar 

  31. E. A. Popova and I. I. Shevchenko, Astron. Lett. 42, 260 (2016).

    Article  ADS  Google Scholar 

  32. R. Schwarz, N. Haghighipour, S. Eggl, et al., Mon. Not. R. Astron. Soc. 414, 2763 (2011).

    Article  ADS  Google Scholar 

  33. R. Schwarz, B. Funk, R. Zechner, et al., Mon. Not. R. Astron. Soc. 460, 3598 (2016).

    Article  ADS  Google Scholar 

  34. F. Selsis, J. F. Kasting, B. Levrard, et al., Astron. Astrophys. 476, 1373 (2007).

    Article  ADS  Google Scholar 

  35. I. I. Shevchenko, Astrophys. J. 799, 8 (2015).

    Article  ADS  Google Scholar 

  36. I. I. Shevchenko, Astron. J. 153, 273 (2017).

    Article  ADS  Google Scholar 

  37. I. I. Shevchenko, Astron. J. 156, 52 (2018).

    Article  ADS  Google Scholar 

  38. A. Tokovinin, Astron. J. 156, 48 (2018).

    Article  ADS  Google Scholar 

  39. G. Zhou, D. Bayliss, J. D. Hartman, et al., Mon. Not. R. Astron. Soc. 451, 2263 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the referee for useful remarks.

Funding

The work of I.I. Shevchenko and A.V. Melnikov was supported in part by the Russian Foundation for Basic Research (project no. 17-02-00028) and Basic Research Program CP19-270 (no. 17) of the Russian Academy of Sciences “Origin and Evolution of the Universe Using Methods of Ground-Based Observations and Space Research.” We claim that there is no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shevchenko.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Astronomicheskii Zhurnal, 2019, Vol. 45, No. 9, pp. 666–672.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, I.I., Melnikov, A.V., Popova, E.A. et al. Circumbinary Planetary Systems in the Solar Neighborhood: Stability and Habitability. Astron. Lett. 45, 620–626 (2019). https://doi.org/10.1134/S1063773719080097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773719080097

Keywords

Navigation