Skip to main content

Advertisement

Log in

Microspatial Differences in Soil Temperature Cause Phenology Change on Par with Long-Term Climate Warming in Salt Marshes

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Phenology studies mostly focus on variation across time or landscapes. However, phenology can vary at fine spatial scales, and these differences may be as important as long-term change from climate warming. We used high-frequency “PhenoCam” data to examine phenology of Spartina alterniflora, a foundation species native to salt marshes on the US East and Gulf coasts, and a common colonizer elsewhere. We examined phenology across three microhabitats from 2013 to 2017 and used this information to create the first spring green-up model for S. alterniflora. We then compared modern spatial variation to that exhibited over a 60-year climate record. Marsh interior plants initiated spring growth 17 days earlier than channel edge plants and spent 35 days more in the green-up phenophase and 25 days less in the maturity phenophase. The start of green-up varied by 17 days among 3 years. The best spring green-up model was based on winter soil total growing degree days. Across microhabitats, spring green-up differences were caused by small elevation changes (15 cm) that drove soil temperature variation of 0.8°C. Preliminary evidence indicated that high winter belowground biomass depletion triggered early green-up. Long-term change was similar: winter soil temperatures warmed 1.7 ± 0.3°C since 1958, and green-up advanced 11 ± 6 days, whereas contemporary microhabitat differences were 17 ± 4 days. Incorporating local spatial variation into plant phenology models may provide an early warning of climate vulnerability and improve understanding of ecosystem-scale productivity. Microscale phenology variation likely exists in other systems and has been unappreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alber M, O’Connell JL. 2019. Elevation drives gradients in surface soil temperature within salt marshes. Geophysical Research Letters 46:5313–22.

    Article  Google Scholar 

  • Arnold CY. 1959. The determination and significance of the base temperature in a linear heat unit system. Proceedings of the American Society for Horticultural Science 74:430–45.

    Google Scholar 

  • Badeck F-W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S. 2004. Responses of spring phenology to climate change. New Phytologist 162:295–309.

    Article  Google Scholar 

  • Bordese M, Alini W. 2013. biOps: Image processing and analysis.

  • Cannell MGR, Smith RI. 1983. Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology 20:951–63.

    Article  Google Scholar 

  • Chuine I, de Cortazar-Atauri IG, Kramer K, Hänninen H. 2013. Plant development models. Phenology: an integrative environmental science. Dordrecht: Springer. p 275–93.

    Chapter  Google Scholar 

  • Cook RD, Weisberg S. 1982. Residuals and influence in regression. New York: Chapman and Hall.

    Google Scholar 

  • De Réaumur R. 1735. Observation du thérmomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’Isle de France, à Alger et en quelquesunes de nos isles de l’Amérique. Memoires de l’Académie des Sciences de Paris.

  • Dunne JA, Harte J, Taylor KJ. 2003. Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods. Ecological Monographs 73:69–86.

    Article  Google Scholar 

  • Gallagher JL. 1983. Seasonal patterns in recoverable underground reserves in Spartina alterniflora Loisel. American Journal of Botany 70:212–15.

    Article  Google Scholar 

  • Gifford RM. 2003. Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Functional Plant Biol 30:171–86.

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC. 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology 2:169–82.

    Article  Google Scholar 

  • Gu L, Post WM, Baldocchi D, Black TA, Verma SB, Vesala T, Wofsy SC. 2003. Phenology of vegetation photosynthesis. Phenology: an integrative environmental science. Tasks for Vegetation Science. Dordrecht: Springer. p 467–85.

    Chapter  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M. 2006. Global temperature change. Proceedings of the National Academy of Sciences 103:14288–93.

    Article  CAS  Google Scholar 

  • Hänninen H. 1987. Effects of temperature on dormancy release in woody plants. Silva Fennica 21(3):279–99.

    Article  Google Scholar 

  • Hladik C, Schalles J, Alber M. 2013. Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sensing of Environment 139:318–30.

    Article  Google Scholar 

  • Hunter AF, Lechowicz MJ. 1992. Predicting the timing of budburst in temperate trees. Journal of Applied Ecology 29:597–604.

    Article  Google Scholar 

  • Jung Y, Burd A. 2017. Seasonal changes in above- and below-ground non-structural carbohydrates (NSC) in Spartina alterniflora in a marsh in Georgia, USA. Aquatic Botany 140:13–22.

    Article  CAS  Google Scholar 

  • Kartesz JT. 2015. The Biota of North America Program (BONAP). Chapel Hill, NC, USA: North American Plant Atlas. http://bonap.net/napa.

  • Kikuzawa K. 1995. Leaf phenology as an optimal strategy for carbon gain in plants. Canadian Journal of Botany 73:158–63.

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR. 2012. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology 100:764–70.

    Article  Google Scholar 

  • Kirwan ML, Megonigal JP. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:53–60.

    Article  CAS  PubMed  Google Scholar 

  • Klosterman ST, Hufkens K, Gray JM, Melaas E, Sonnentag O, Lavine I, Mitchell L, Norman R, Friedl MA, Richardson AD. 2014. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11:4305–20.

    Article  Google Scholar 

  • Laidler KJ. 1984. The development of the Arrhenius equation. Journal of Chemical Education 61:494.

    Article  CAS  Google Scholar 

  • Mendelssohn IA, Morris JT. 2002. Eco-physiological controls on the productivity of Spartina alterniflora Loisel. In: Weinstein MP, Kreeger DA, Eds. Concepts and controversies in tidal marsh ecology. Netherlands: Springer. p 59–80.

    Chapter  Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. 2002. Responses of coastal wetlands to rising sea level. Ecology 83:2869–77.

    Article  Google Scholar 

  • Mudd SM, Howell SM, Morris JT. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82:377–89.

    Article  CAS  Google Scholar 

  • Murray MB, Cannell MGR, Smith RI. 1989. Date of budburst of fifteen tree species in britain following climatic warming. Journal of Applied Ecology 26:693–700.

    Article  Google Scholar 

  • Nyman JA, Delaune RD, Roberts HH, Patrick WH. 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series 96:269–79.

    Article  Google Scholar 

  • O’Connell JL, Alber M. 2016. A smart classifier for extracting environmental data from digital image time-series: applications for PhenoCam data in a tidal salt marsh. Environmental Modelling & Software 84:134–9.

    Article  Google Scholar 

  • O’Donnell JPR, Schalles JF. 2016. Examination of abiotic drivers and their influence on Spartina alterniflora biomass over a twenty-eight year period using Landsat 5 TM satellite imagery of the central Georgia coast. Remote Sensing 8:477.

    Article  Google Scholar 

  • Pennings SC, Bertness MD. 2001. Salt marsh communities. In: Hay ME, Gaines SD, Bertness MD, Eds. Marine community ecology. Sunderland: Sinauer Associates. p 550.

    Google Scholar 

  • Peterson PM, Romaschenko K, Arrieta YH, Saarela JM. 2014a. A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). Taxon 63:1212–43.

    Article  Google Scholar 

  • Peterson PM, Romaschenko K, Arrieta YH, Saarela JM. 2014b. Proposal to conserve the name Sporobolus against Spartina, Crypsis, Ponceletia, and Heleochloa (Poaceae: Chloridoideae: Sporobolinae). Taxon 63:1373–4.

    Article  Google Scholar 

  • Primack RB, Ibáñez I, Higuchi H, Lee SD, Miller-Rushing AJ, Wilson AM, Silander JA. 2009. Spatial and interspecific variability in phenological responses to warming temperatures. Biological Conservation 142:2569–77.

    Article  Google Scholar 

  • Richardson AD, Jenkins JP, Braswell BH, Hollinger DY, Ollinger SV, Smith M-L. 2007. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152:323–34.

    Article  PubMed  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology 169:156–73.

    Article  Google Scholar 

  • Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G. 2001. Tree and forest functioning in response to global warming. New Phytologist 149:369–99.

    Article  CAS  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A. 2006. Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology 12:343–51.

    Article  Google Scholar 

  • Schwartz MD, Ed. 2013. Phenology: an integrative environmental science. Dordrecht: Springer.

    Google Scholar 

  • Seneca ED. 1974. Germination and seedling response of Atlantic and Gulf Coasts populations of Spartina alterniflora. American Journal of Botany 61:947–56.

    Article  Google Scholar 

  • Somers GF, Grant D. 1981. Influence of seed source upon phenology of flowering of Spartina alterniflora Loisel. and the likelihood of cross pollination. American Journal of Botany 68:6–9.

    Article  Google Scholar 

  • Stanton ML, Galen C, Shore J. 1997. Population structure along a steep environmental gradient: consequences of flowering time and habitat variation in the Snow Buttercup, Ranunculus Adoneus. Evolution 51:79–94.

    Article  CAS  PubMed  Google Scholar 

  • Strong DR, Ayres DA. 2016. Control and consequences of Spartina spp. invasions with focus upon San Francisco Bay. Biological Invasions 18:2237–46.

    Article  Google Scholar 

  • Swanson KM, Drexler JZ, Schoellhamer DH, Thorne KM, Casazza ML, Overton CT, Callaway JC, Takekawa JY. 2014. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary. Estuaries and Coasts 37:476–92.

    Article  Google Scholar 

  • Travis SE, Hester MW. 2005. A space-for-time substitution reveals the long-term decline in genotypic diversity of a widespread salt marsh plant, Spartina alterniflora, over a span of 1500 years. Journal of Ecology 93:417–30.

    Article  Google Scholar 

  • USDA, NRCS. 2019. The PLANTS Database. National Plant Data Team.

  • USGCRP. 2017. Climate science special report. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK, Eds. Washington D.C.: U.S. Global Change Research Program.

  • Vegis A. 1964. Dormancy in higher plants. Annual Review of Plant Physiology 15:185–224.

    Article  CAS  Google Scholar 

  • Voss CM, Christian RR, Morris JT. 2013. Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes. Marine Biology 160:181–94.

    Article  PubMed  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature 416:389–95.

    Article  CAS  PubMed  Google Scholar 

  • Zelikova TJ, Williams DG, Hoenigman R, Blumenthal DM, Morgan JA, Pendall E. 2015. Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland. Journal of Ecology 103:1119–30.

    Article  CAS  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH. 2004. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology 10:1133–45.

    Article  Google Scholar 

  • Zheng S, Shao D, Asaeda T, Sun T, Luo S, Cheng M. 2016. Modeling the growth dynamics of Spartina alterniflora and the effects of its control measures. Ecological Engineering 97:144–56.

    Article  Google Scholar 

Download references

Acknowledgements

The Georgia Coastal Ecosystems LTER is supported by the National Science Foundation (OCE12-37140). We thank Wade Sheldon, Jacob Shalack and the National PhenoCam Network for managing and curating the GCE PhenoCam, and the GCE field crew for collecting belowground biomass data (particularly Caroline Reddy, Timothy Montgomery, Dontrece Smith, and Alyssa Peterson). We thank the editor and reviewers for helpful comments that improved the manuscript. This is contribution 1076 of the University of Georgia Marine Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica L. O’Connell.

Additional information

Author’s Contribution

JLO designed the study, analyzed the data, wrote the paper; MA designed the study, contributed to the paper writing, provided funding for the study; SCP designed the study, contributed to the paper writing, provided funding for the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connell, J.L., Alber, M. & Pennings, S.C. Microspatial Differences in Soil Temperature Cause Phenology Change on Par with Long-Term Climate Warming in Salt Marshes. Ecosystems 23, 498–510 (2020). https://doi.org/10.1007/s10021-019-00418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00418-1

Keywords

Navigation