Skip to main content
Log in

Enhancement of Poly(vinyl chloride) Electrolyte Membrane by Its Exposure to an Atmospheric Dielectric Barrier Discharge Followed by Grafting with Polyacrylic Acid

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A poly(vinyl chloride) (PVC) membrane was exposed to atmospheric-pressure dielectric barrier discharge and subsequently wet-chemically grafted with poly(acrylic acid) (PAA) and then consumed with poly(ethyleneimine) (PEI). The thus modified membrane was characterized by measurement of the static water contact angle, by scanning electron microscopy, infrared spectroscopy (ATR-FTIR), thermogravimetry (TGA) and electrolytic responses. The TGA favors a thermally stable grafted PVC membrane. The ATR-FTIR revealed the existence of an ultra-thin PAA layer grafted onto the surface of the plasma-modified PVC membrane. The ion exchange capacity measurement of the grafted poly(vinyl chloride) (PVC–PAA) sample was close to that of additionally wet-chemically aminated with PEI for 12 h or more (PVC–PAA–PEI). It means that PVC–PAA membranes do not need necessarily further modifications. As concomitant helpful effect, it was observed that the swelling degree of the PVC membrane was reduced after plasma exposure due to plasma-induced crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kamoun EA, Youssef ME, Abu-Saied MA, Fahmy A, Khalil HF, Abdelhai F (2015) Ion conducting nanocomposite membranes based on PVA-HAHAP for fuel cell application: iI. Effect of modifier agent of PVA on membrane properties. Int J Electrochem Sci 10:6627

    CAS  Google Scholar 

  2. Venkatesan PN, Dharmalingam S (2017) Characterization and performance study of phase inversed Sulfonated Poly Ether Ether Ketone–Silico tungstic composite membrane as an electrolyte for microbial fuel cell applications. Renew Energy 102:77

    Article  Google Scholar 

  3. Tseng CY, Ye YS, Cheng MY, Kao KY, Shen W-C, Rick J, Chen J-C, Wang B-J (2011) Sulfonated polyimide proton exchange membranes with graphene oxide show improved proton conductivity, methanol crossover impedance, and mechanical properties. Adv Energy Mater 1:1220

    Article  CAS  Google Scholar 

  4. Fu YZ, Manthiram A, Guiver MD (2007) Acid–base blend membranes based on 2-amino-benzimidazole and sulfonated poly(ether ether ketone) for direct methanol fuel cells. Electrochem Commun 9:905

    Article  CAS  Google Scholar 

  5. Jiang Z, Zhao X, Fu Y, Manthiram A (2012) Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J Mater Chem 22:24862

    Article  CAS  Google Scholar 

  6. Wang J, Liao J, Yang L, Zhang S, Huang X, Ji J (2012) Highly compatible acid–base blend membranes based on sulfonated poly(ether ether ketone) and poly (ether ether ketone-alt-benzimidazole) for fuel cells application. J Membr Sci 415–416:644

    Article  Google Scholar 

  7. Jiang Z, Jiang Z-J (2014) Plasma techniques for the fabrication of polymer electrolyte membranes for fuel cells. J Membr Sci 456:85

    Article  CAS  Google Scholar 

  8. Follain N, Roualdes S, Marais S, Frugier J, Reinholdt M, Durand J (2012) Water transport properties of plasma-modified commercial anion-exchange membrane for solid alkaline fuel cells. J Phys Chem C 116:8510

    Article  CAS  Google Scholar 

  9. Reinholdt M, Ilie A, Roualdès S, Frugier J, Schieda M, Coutanceau C, Martemianov C, Flaud V, Beche E, Durand J (2012) Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells. Membranes 2:529

    Article  CAS  Google Scholar 

  10. Navarro A, delRío C, Acosta JL (2009) Pore-filling electrolyte membranes based on plasma-activated microporous PE matrices and sulfonated hydrogenated styrene butadiene block copolymer (SHSBS) Single cell test and impedance spectroscopy in symmetrical mode. Solid State Ionics 180:1505

    Article  CAS  Google Scholar 

  11. Bébin P, Caravanier M, Galiano H (2006) Nafions/clay-SO3H membrane for proton exchange membrane fuel cell application. J Membr Sci 278:35

    Article  Google Scholar 

  12. Unger WES, Swaraj S, Oran U (2006) Radio frequency (r.f.) plasma-deposited polymer films: influence of external plasma parameters as viewed by comprehensive in situ surface chemical analysis by XAS, XPS and ToF-SIMS. Surf Interface Anal 38:522

    Article  CAS  Google Scholar 

  13. Scheltjens G, Ponte GD, Paulussen S, de Graeve I, Terryn H, Reniers F, van Asche G, van Mele B (2015) Thermal properties of plasma deposited methyl methacrylate films in an atmospheric DBD reactor. Plasma Process Polym 12:260

    Article  CAS  Google Scholar 

  14. Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

    Book  Google Scholar 

  15. Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, de la Fuente JM, Nienhaus GU, Parak WJ (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996

    Article  CAS  Google Scholar 

  16. Lei S, Wang X, Li B, Kang J, He Y, George A, Ge L, Gong Y, Dong P, Jin Z, Brunetto G, Chen W, Lin Z-T, Baines R, Galvao DS, Lou J, Barrera E, Banerjee K, Vajtai R, Ajayan P (2016) Surface functionalization of two-dimensional metal chalcogenides by Lewis acid − base chemistry. Nat Nanotechnol 11:465

    Article  CAS  Google Scholar 

  17. Biederman H, Slavínská D (2000) Plasma polymer films and their future prospects. Surf Coat Technol 125:371

    Article  CAS  Google Scholar 

  18. De Vietro N, Belforte L, Lambertini VG, Fracassi F (2014) Low-pressure plasma modified polycarbonate: a transparent, low reflective and scratch resistant material for automotive applications appl. Surf Sci 307:698

    Article  Google Scholar 

  19. Nisol B, Batan A, Dabeux F, Kakaroglou A, De Graeve I, Van Assche G, Van Mele B, Terryn H, Reniers F (2013) Surface characterization of atmospheric pressure plasma-deposited allyl methacrylate and acrylic acid based coatings. Plasma Process Polym 10:564

    Article  CAS  Google Scholar 

  20. Batan A, Brusciotti F, De Graeve I, Vereecken J, Wenkin M, Piens M, Pireaux JJ, Reniers F, Terryn H (2010) Comparison between wet deposition and plasma deposition of silane coatings on aluminium. Prog Org Coat 69:126

    Article  CAS  Google Scholar 

  21. Vilani C, Weibel DE, Zamora RRM, Habert AC, Achete CA (2007) Study of the influence of the acrylic acid plasma parameters on silicon and polyurethane substrates using XPS and AFM. Appl Surf Sci 254:131

    Article  CAS  Google Scholar 

  22. Weibel DE, Vilani C, Habert AC, Achete CA (2007) Surface modification of polyurethane membranes using low-powered gas plasmas. Influence on the pervaporation processes. J Membr Sci 293:124

    Article  CAS  Google Scholar 

  23. Solouk A, Solati MH, Najarian S, Mirzadeh H, Seifalian AM (2011) Optimization of acrylic acid grafting onto POSS-PCU nanocomposite using response surface methodology. Iran Polym J 20:91

    CAS  Google Scholar 

  24. Fahmy A, Friedrich J (2013) Degradation behavior of thin polystyrene films under exposure to Ar-plasma and its emitted radiation. J Adhes Sci Technol 27:324

    Article  CAS  Google Scholar 

  25. Desmet T, Morent R, Geyter N, Leys C (2009) Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromol 10:2351

    Article  CAS  Google Scholar 

  26. Keshvari H, Mirzadeh H, Mansoori P (2008) Collagen immobilization onto acrylic acid laser-grafted silicone for using as artificial skin: in vitro. Iran Polym J 17:171

    CAS  Google Scholar 

  27. Perni S, Kong MG, Prokopovich P (2012) Cold atmospheric pressure gas plasma enhances the wear performance of ultra-high molecular weight polyethylene. Acta Biomater 8:1357

    Article  CAS  Google Scholar 

  28. D’Sa RA, Burke GA, Meenan BJ (2010) Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces. Acta Biomater 6:2609

    Article  Google Scholar 

  29. Shao T, Zhang C, Long K, Zhang D, Wang J, Yan P, Zhou Y (2010) Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air. Appl Surf Sci 256(12):3888

    Article  CAS  Google Scholar 

  30. Morent R, De Geyter N, van Vlierberghe S (2011) Influence of operating parameters on plasma polymerization of acrylic acid in a mesh-to-plate dielectric barrier discharge. Prog Org Coat 70:336

    Article  CAS  Google Scholar 

  31. Sardella E, Favia P, Dilonardo E, Petroni L, d´Agostino R (2007) PE-CVD of Acid/base coatings from acrylic acid and allylamine vapours. Plasma Process Polym 4:S781

    Article  Google Scholar 

  32. Manley TC (1943) The electric characteristics of the ozonator discharge. Trans Electrochem Soc 84(1):83

    Article  Google Scholar 

  33. Kogelschatz U (2002) Dielectric-barrier discharges: their history, discharge physics and industrial applications. IEEE Trans Plasma Sci 30(4):1400

    Article  CAS  Google Scholar 

  34. Zainoodin AM, Kamarudin SK, Masdar MS, Daud WRW, Mohamad AB, Sahari J (2014) High power direct methanol fuel cell with a porous carbon nanofiber anode layer. J Appl Energy 113:946

    Article  CAS  Google Scholar 

  35. Yang C, Chiu S, Kuo S (2011) Preparation of poly (vinyl alcohol)/montmorillonite/poly (styrene sulfonic acid) composite membranes for hydrogen–oxygen polymer electrolyte fuel cells. J Curr Appl Phys 11:229

    Article  Google Scholar 

  36. Hasan M, Narayan A, Lee M (2015) Enhanced thermo-optical performance and high BET surface area of graphene PVC nanocomposite fibers prepared by simple facile deposition technique: N2 adsorption study. J Ind Eng Chem 21:828

    Article  CAS  Google Scholar 

  37. Elamathi S (2010) Synthesis and characterization of polymer electrolyte membranes for fuel cell application, chapter two. Ph.D., Anna University, Chennai-Madras, India

  38. Abu-Saied M, Fontananova E, Drioli E, Mohi Eldin MS (2013) Sulphonated poly(glycidyl methacrylate) grafted cellophane membranes: novel application inpolyelectrolyte membrane fuel cell (PEMFC). J Polym Res 20(7):1

    Article  CAS  Google Scholar 

  39. Brandenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26:053001

    Article  Google Scholar 

  40. Fahmy A, Schönhals A (2016) Reaction of CO2 gas with (radicals in) plasma polymerized acrylic acid (and formation of COOH-rich polymer layers). Plasma Process Polym 13:499

    Article  CAS  Google Scholar 

  41. Villegas M, Romero AI, Parentis ML (2016) Acrylic acid plasma polymerized poly(3-hydroxybutyrate) membranes formethanol/MTBE separation by pervaporation. Chem Eng Res Des 109:234

    Article  CAS  Google Scholar 

  42. Fahmy A, Debarnot D, Friedrich J (2015) Influence of water addition on the structure of plasma-deposited allyl alcohol polymer films. J Adhes Sci Technol 29(10):965

    Article  CAS  Google Scholar 

  43. Fahmy A, Friedrich J, Poncin-Epaillard F, Debarnot D (2016) Plasma polymerized allyl alcohol/O2 thin films embedded with silver nanoparticles. Thin Solid Films 616:339

    Article  CAS  Google Scholar 

  44. Rezaei F, Shokri B, Sharifian M (2016) Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: a study on cell growth/proliferation and antibacterial properties. Appl Surf Sci 360:641

    Article  CAS  Google Scholar 

  45. Merche D, Poleunis C, Bertrand P (2009) Synthesis of polystyrene thin films by means of an atmospheric-pressure plasma torch and a dielectric barrier discharge. IEEE Trans Plasma Sci 37(6):951

    Article  CAS  Google Scholar 

  46. Del Fanti NA (2008) Infrared spectroscopy of polymer. Thermo Fisher Scientific Inc., Waltham

    Google Scholar 

  47. Fahmy A, Eisa WH, Yosef M, Hassan A (2016) Ultra-thin films of poly(acrylic acid)/silver nanocomposite coatings for antimicrobial applications. J Spectrosc 2016:1

    Article  Google Scholar 

  48. Mahfoudh A, Barbeau J, Moisan M, Leduc A, Seguin J (2010) Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria. Appl Surf Sci 256(10):3063

    Article  CAS  Google Scholar 

  49. Fahmy A, El-Nasser KS, Ali IO, Salama TM, Altmann K, Friedrich JF (2017) Tuning of adhesion of silver nanoparticles onto zeolite ZSM-5 using electrospray ionization (ESI) encapsulation with poly (acrylic acid). J Adhes Sci Technol 31(24):2641

    Article  CAS  Google Scholar 

  50. Fahmy A, Mohamed TA, Friedrich JF (2018) XPS and IR studies of plasma polymers layer deposited from allylamine with addition of ammonia. Appl Surf Sci 458:1006

    Article  CAS  Google Scholar 

  51. Morent R, De Geyter N, Trentesaux M, Gengembre L, Dubruel P, Leys C, Payen E (2010) Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure. Appl Surf Sci 257:372

    Article  CAS  Google Scholar 

  52. Edwards HGM, Brown DR, Dale JA, Plant S (2000) Raman spectroscopy of sulphonated polystyrene resins. J Vib Spectrosc 24:213

    Article  CAS  Google Scholar 

  53. Mohanapriya S, Bhat SD, Sahu AK, Manokaran A, Vijayakumar R, Pitchumani S, Sridhar P, Shukla AK (2010) Sodium-alginate-based proton-exchange membranes as electrolytes for DMFCs. Energy Environ Sci 3:1746

    Article  CAS  Google Scholar 

  54. Maiti J, Kakati N, Lee SH, Jee SH, Viswanathan B, Yoon YS (2012) Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications? J Power Sources 216:48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alaa Fahmy or Jörg Florian Friedrich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Saied, M., Fahmy, A., Morgan, N. et al. Enhancement of Poly(vinyl chloride) Electrolyte Membrane by Its Exposure to an Atmospheric Dielectric Barrier Discharge Followed by Grafting with Polyacrylic Acid. Plasma Chem Plasma Process 39, 1499–1517 (2019). https://doi.org/10.1007/s11090-019-10017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10017-6

Keywords

Navigation