Skip to main content
Log in

Hom–Tensor Categories and the Hom–Yang–Baxter Equation

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We introduce a new type of categorical object called a hom–tensor category and show that it provides the appropriate setting for modules over an arbitrary hom-bialgebra. Next we introduce the notion of hom-braided category and show that this is the right setting for modules over quasitriangular hom-bialgebras. We also show how the Hom–Yang–Baxter equation fits into this framework and how the category of Yetter–Drinfeld modules over a hom-bialgebra with bijective structure map can be organized as a hom-braided category. Finally we prove that, under certain conditions, one can obtain a tensor category (respectively a braided tensor category) from a hom–tensor category (respectively a hom-braided category).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizawa, N., Sato, H.: \(q\)-deformation of the Virasoro algebra with central extension. Phys. Lett. B 256, 185–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bénabou, J.: Catégories avec multiplication. C. R. Acad. Sci. Paris Ser. I Math. 256, 1887–1890 (1963)

    MATH  Google Scholar 

  4. Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 76, 38–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf algebras. Commun. Algebra 39, 2216–2240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaichian, M., Kulish, P., Lukierski, J.: \(q\)-deformed Jacobi identity, \(q\)-oscillators and \(q\)-deformed infinite-dimensional algebras. Phys. Lett. B 237, 401–406 (1990)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y., Wang, Z., Zhang, L.: Integrals for monoidal Hom-Hopf algebras and their applications. J. Math. Phys. 54, 073515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Curtright, T.L., Zachos, C.K.: Deforming maps for quantum algebras. Phys. Lett. B 243, 237–244 (1990)

    Article  MathSciNet  Google Scholar 

  9. Daskaloyannis, C.: Generalized deformed Virasoro algebras. Modern Phys. Lett. A 7, 809–816 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, L., Zheng, S.: Free involutive Hom-semigroups and Hom-associative algebras. Front. Math. China 11, 497–508 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hartwig, J.T., Larsson, D., Silvestrov, S.: Deformations of Lie algebras using \(\sigma \)-derivations. J. Algebra 295, 314–361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hassanzadeh, M., Shapiro, I., Sütlü, S.: Cyclic homology for Hom-associative algebras. J. Geom. Phys. 98, 40–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kassel, C.: Cyclic homology of differential operators, the Virasoro algebra and a \(q\)-analogue. Commun. Math. Phys. 146, 343–356 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kassel, C.: Quantum Groups, Graduate Texts in Mathematics 155. Springer, New York (1995)

    Google Scholar 

  16. Larsson, D., Silvestrov, S.: Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J. Algebra 288, 321–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, L., Shen, B.: Radford’s biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras. J. Math. Phys. 55, 031701 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Makhlouf, A., Panaite, F.: Yetter-Drinfeld modules for Hom-bialgebras. J. Math. Phys. 55, 013501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Makhlouf, A., Silvestrov, S.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2, 51–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Makhlouf, A., Silvestrov, S.: Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (eds.) Generalized Lie theory in Mathematics, Physics and Beyond, pp. 189–206. Springer, Berlin (2008)

    Google Scholar 

  21. Makhlouf, A., Silvestrov, S.: Hom-algebras and Hom-coalgebras. J. Algebra Appl. 9, 553–589 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sheng, Y.: Representations of Hom-Lie algebras. Algebr. Represent. Theory 6, 1081–1098 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter, Berlin (1994)

    MATH  Google Scholar 

  24. Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yau, D.: Module Hom-algebras (2008). arXiv:0812.4695

  26. Yau, D.: The Hom–Yang–Baxter equation, Hom–Lie algebras, and quasi-triangular bialgebras. J. Phys. A Math. Theor. 42, 165202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yau, D.: Hom-quantum groups III: representations and module Hom-algebras (2009). arXiv:0911.5402

  28. Yau, D.: Hom-bialgebras and comodule Hom-algebras. Int. Electron. J. Algebra 8, 45–64 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Yau, D.: Hom-quantum groups I: quasi-triangular Hom-bialgebras. J. Phys. A Math. Theor. 45, 065203 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai D. Staic.

Additional information

Communicated by D.N. Yetter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panaite, F., Schrader, P.T. & Staic, M.D. Hom–Tensor Categories and the Hom–Yang–Baxter Equation. Appl Categor Struct 27, 323–363 (2019). https://doi.org/10.1007/s10485-019-09556-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-019-09556-y

Keywords

Mathematics Subject Classification

Navigation