Skip to main content

Advertisement

Log in

Granulation and Heat Recovery from Metallurgical Slags

  • Thematic Section: Slag Valorisation
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Metallurgical slags are produced at a massive rate of over 750 Mt/year, and carry a thermal energy equivalent to 40 Mt/year of coal. The potential mineral and thermal energy values of slags are in the order of $22 b and $3–6 b per year. Such attractive figures, together with tightening legislation on disposal of slag and the carbon footprint associated with the loss of mineral and energy values of slags have created a significant thrust in the past decade to develop sustainable approaches for full utilization of slag and its waste heat. As a result of extensive R&D in this area, the slag-processing technologies are slowly converging around dry granulation combined with heat recovery. In this paper, the slag granulation and heat recovery options are reviewed and given a critical evaluation, aiming to provide a basis for future directions in slag handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Although the RASA flowsheet may have one extra stage, this extra stage ensures superior water quality in circulation when all other factors are considered.

References

  1. Barati M, Esfahani S, Utigard TA (2011) Energy recovery from high temperature slags. Energy 36:5440–5449

    CAS  Google Scholar 

  2. World Steel Association (2018) World Steel Association Yearbook and Factsheets. http://www.worldsteel.org/. Accessed 1 Dec 2018

  3. International Stainless Steel Forum (2019) Meltshop Production Statistics Available at: http://www.worldstainless.org/statistics. Accessed 10 Jan 2019

  4. U.S. Geological Survey, Commodity Statistics and Information (2018). http://minerals.usgs.gov/minerals/pubs/commodity/. Accessed 20 Dec 2018

  5. Warner AEM, Diaz CM, Dalvi AD, Mackey PJ, Tarasov AV (2006) JOM world nonferrous smelter survey. Part III: Nickel: Laterite. JOM 58(4):11–20

    Google Scholar 

  6. Warner AEM et al (2007) JOM world nonferrous smelter survey Part IV: Nickel: Sulfide. JOM 59(4):58–72

    CAS  Google Scholar 

  7. Pickering SJ, Hay N, Roylance TF, Thomas GH (1985) New process for dry granulation and heat recovery from molten blast furnace slag. Ironmak Steelmak 12:14–21

    CAS  Google Scholar 

  8. The European Slag Association (Euroslag), Technical Leaflet No. 1: Granulated Blastfurnace Slag (2005)

  9. Nippon Slag Association, Iron and Steel Statistics (2018) http://www.slg.jp/e/statistics/index.html. Accessed 20 Dec 2018

  10. The European Slag Association (Euroslag). Slag Statistical Data (2012) Statistical Data. http://www.euroslag.com/researchlibrarydownloads/downloads/. Accessed 20 Aug 2012

  11. Mudersbach D, Drissen P, Motz H (2011) Improved slag qualities by liquid slag treatment. In: 2nd international slag valorisation symposium. Katholieke Universitat, Leuven, pp 299–311

    Google Scholar 

  12. Engström F et al (2011) Hot stage slag engineering as a method to improve slag valorisation options. In: 2nd international slag valorisation symposium. Katholieke Universitat, Leuven, pp 230–251

    Google Scholar 

  13. Ma N, Houser JB (2014) Recycling of steelmaking slag fines by weak magnetic separation coupled with selective particle size screening. J Clean Prod 82:221–231

    CAS  Google Scholar 

  14. Niemelä P, Kauppi M (2007) Production, characteristics and use of ferrochromium slags. In: INFACON XI, pp 171–179

  15. Qiang J, Jinyin X, Weibo G (1993) A new type of processing and resource application technology for baosteel steel slag

  16. Emery J (1980) Pelletized lighteweight slag aggregate. In: Concrete international. American Concrete Institute, p 11

  17. Das B et al (2010) Characterization and recovery of copper values from discarded slag. Waste Manag Res 28:561–567

    CAS  Google Scholar 

  18. Sripriya R, Murty CVGK (2005) Recovery of metal from slag/mixed metal generated in ferroalloy plants—a case study. Int J Miner Process 75:123–134

    CAS  Google Scholar 

  19. Horri K, Tsutsumi N, Kitano Y, Kato T (2013) Processing and reusing technologies for steelmaking slag. Nippon Steel Tech Rep 104:123–129

    Google Scholar 

  20. Tossavainen M et al (2007) Characteristics of steel slag under different cooling conditions. Waste Manag 27:1335–1344

    CAS  Google Scholar 

  21. Jahanshahi S, Jorgensen FRA, Moyle FJ, Zhang Z (1994) The safe disposal of toxic elements in slags. In: Australian Asia pacific conference on pyrometallurgy for complex materials and wastes. TMS, Warrendale, pp 105–119

    Google Scholar 

  22. Takebe H et al (2017) Effect of crystallization on microstructure and elution properties in copper slag. J Sustain Metall 3:543–550

    Google Scholar 

  23. Leyser P, Cortina C (2006) INBA slag granulation system with environmental control of water and emissions. Millenn Steel 67–72

  24. Smith M (2017) Blast furnace slag granulation, personal communication. Nov 2017

  25. van Stein Callenfels E, van Ikelen J (2017) Slag granulation systems for blast furnace. Danieli Corus Report No: B-2-033, p 12.

  26. van Laar R, Dupon E, Barel J, Kamerling M (2014) Blast furnace slag granulation plant technology. Millenium Steel 28–31

  27. Fukuyama Works (1983) Blast granulation system of BOF slag and its products. Nippon Kokan Technical Report No. 38

  28. Yoshida H, Nara Y, Nakatani G, Anzai T, Sato H (1984) Technology of slag heat recovery at NKK. South East Asia Iron Steel Inst

  29. Ando J, Nakahara T, Onoue H, Ichimura S, Kondo M (1985) Development of slag blast granulation plant characterized by innovation of the slag treatment method, heat recovery, and recovery of slag as resources. Mitsubishi Heavy Industries, Ltd. Technical Review, pp 136–142

  30. Faucher S, So LC, Mostaghel S, Lee SK, Oh S-Y (2016) Recent developments in commercial scale dry slag granulation and energy recovery. In: AISTech—Iron and Steel Technology Conference Proceedings (Association for Iron and Steel Technology, AISTECH, vol 1, pp 137–144

  31. Zuber M et al (2016) Dry slag atomization of copper slags for iron silicate production. In: Copper2016, MMIJ, Kobe, Japan, p 11

  32. So LC et al (2015) Dry slag granulation: a path to improving the safety and sustainability of the metallurgical sector. In: Conference of metallurgists, pp 1–12. https://doi.org/10.1097/mao.0b013e31811515ae

  33. Nakada T, Nakayama H, Fujii K, Iwahashi T (1983) Heat recovery in dry granulation of molten blast furnace slag. Energy Dev Jpn 55:287–309

    Google Scholar 

  34. Sieverding F (1980) Heat recovery by dry granulation of blast furnace slags. Steel Times 208:469–472

    Google Scholar 

  35. I.H.I. Ltd. (1980) The dry granulation and heat recovery of the blast furnace slags

  36. Yoshinaga M, Fujii K, Shigematsu T, Nakata T (1981) Dry granulation and solidification of molten blast furnace slag. Tran Iron Steel Ins Japan 22(11):823–829

    Google Scholar 

  37. Macauley D (1996) Slag treatment—Time for an improvement. Steel Times Int 20:S15–16

    Google Scholar 

  38. Featherstone WB (1998) Slag treatment improvement by dry granulation. Iron Steel Eng 75:42–46

    CAS  Google Scholar 

  39. Jahanshahi S, Xie D, Pan Y, Ridgeway P, Mathieso JG (2011) Dry slag granulation with integrated heat recovery. In: 1st international conference on energy efficiency and CO2 reduction in the steel industry—incorporated in METEC (The Steel Institute VDEh, p 7

  40. Jahanshahi S, Xie D (2012) Current status and future direction of CSIRO’s dry slag granulation process with waste heat recovery. In: ICS2012: 5th international congress on the science and technology of steelmaking. ENGICOM, Dresden, Germany, p 9

  41. Norgate MTE, Xie D, Jahanshahi S (2012) Technical and economic evaluation of slag dry granulation. In: AISTech (Association for Iron & Steel Technology, pp 35–46

  42. McDonald IJ, Werner A (2014) Dry slag granulation with heat recovery. In: AISTech—Iron and steel technology conference proceedings (Association for Iron and Steel Technology, AISTECH, vol 1, pp 467–473

  43. Smith MP (2017) Blast furnace ironmaking—a view on future developments. Procedia Eng 174:19–28

    Google Scholar 

  44. Fleischanderl A, Fenzl T, Neuhold R (2018) Dry slag granulation—the future way to granulate blast furnace slag. In: AISTech 2018 conference proceedings, pp 87–94

  45. Olli A (2018) Personal communication. Nov 2018

  46. Fenzl T, Neuhold R, Rummer B (2017) Installation of a dry slag granulation pilot plant at blast furnace A of Voestalpine. In: Proceedings of ESTAD conference 10. TEMA Technologie Marketing AG, Aachen, Germany

  47. Kappes H, Michel D (2012) Dry slag granulation and energy recovery. In: 4th international slag valorisation symposium—zero waste, pp 39–52

  48. Kappes H, Michels D (2015) Dry slag granulation with energy recovery: operation of full scale pilot plant. In: METEC and 2nd ESTAD 2015 international conference. TEMA Technologie Marketing AG, Aachen, Germany, p 6

  49. Esfahani S, Mostaghel S, Barati M (2016) Effect of slag composition on the crystallization of synthetic CaO-SiO2-Al2O3-MgO slags: part II- measurement and prediction of critical cooling rate. J Non Cryst Solids 436:29–34

    CAS  Google Scholar 

  50. Zhao D, Zhang Z, Tang X, Liu L, Wang X (2014) Preparation of slag wool by integrated waste-heat recovery and resource recycling of molten blast furnace slags: from fundamental to industrial application. Energies 7:3121–3135

    CAS  Google Scholar 

  51. Li J, Liu W, Zhang Y, Yang A, Zhao K (2015) Research on modifying blast furnace slag as a raw material of slag fiber. Mater Manuf Process 30:374–380

    CAS  Google Scholar 

  52. Zhao L, Li Y, Zhou Y, Cang D (2014) Preparation of novel ceramics with high cao content from steel slag. J Mater Des 64:608–613

    CAS  Google Scholar 

  53. Yang HA (2003) New One-step technology of mineral wool production by using the sensible heat of industrial BF slag high-efficiently. Chinese Patent # 02152584.

  54. Kasai E, Kitajima T, Akiyama T, Yagi J, Saito F (1997) Rate of methane-steam reforming reaction on the surface of molten BF slag—for heat recovery from molten slag by using a chemical reaction. ISIJ Int 37:1031–1036

    CAS  Google Scholar 

  55. Shimada T, Kochura V, Akiyama T, Kasai E, Yagi J (2001) Effects of slag compositions on the rate of methane-steam reaction. ISIJ Int 41:111–115

    CAS  Google Scholar 

  56. Akiyama T, Oikawa K, Shimada T, Kasai E, Yagi J-I (2000) Thermodynamic analysis of thermochemical recovery of high temperature wastes. ISIJ Int 40:286–291

    CAS  Google Scholar 

  57. Maruoka N, Mizuochi T, Purwanto H, Akiyama T (2004) Feasibility study for recovering waste heat in the steelmaking industry using a chemical recuperator. ISIJ Int 44:257–262

    CAS  Google Scholar 

  58. Purwanto H, Akiyama T (2006) Hydrogen production from biogas using hot slag. Int J Hydrogen Energy 31:491–495

    CAS  Google Scholar 

  59. Hong-xiong L (2004) Investigation of coal gasification using blast furnace molten slag as heat carrier. Energy Conserv 6:41–43

    Google Scholar 

  60. Li P, Yu Q, Qin Q, Lei W (2012) Kinetics of CO2/coal gasification in molten blast furnace slag. Ind Eng Chem Res 51:15872–15883

    CAS  Google Scholar 

  61. Li P, Yu Q, Qin Q, Liu J (2011) Adaptability of coal gasification in molten blast furnace slag on coal samples and granularities. Energy Fuels 25:5678–5682

    CAS  Google Scholar 

  62. Li P, Yu Q, Xie H, Qin Q, Wang K (2013) CO2 gasification rate analysis of datong coal using slag granules as heat carrier for heat recovery from blast furnace slag by using a chemical reaction. Energy Fuels 27:4810–4817

    CAS  Google Scholar 

  63. Duan W et al (2014) The technological calculation for synergistic system of BF Slag waste heat recovery and carbon resources reduction. Energy Convers Manag 87:185–190

    CAS  Google Scholar 

  64. Duan W, Yu Q, Xie H, Qin Q, Zuo Z (2014) Thermodynamic analysis of hydrogen-rich gas generation from coal/steam gasification using blast furnace slag as heat carrier. Int J Hydrogen Energy 39:11611–11619

    CAS  Google Scholar 

  65. Zhao L, Wang H, Qing S, Liu H (2010) Characteristics of gaseous product from municipal solid waste gasification with hot blast furnace slag. J Nat Gas Chem 19:403–408

    CAS  Google Scholar 

  66. Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74:631–653

    CAS  Google Scholar 

  67. Luo S, Zhou Y, Yi C (2012) Hydrogen-rich gas production from biomass catalytic gasification using hot blast furnace slag as heat carrier and catalyst in moving-bed reactor. Int J Hydrogen Energy 37:15081–15085

    CAS  Google Scholar 

  68. Sun Y, Zhang Z, Seetharaman S, Liu L, Wang X (2014) Characteristics of low temperature biomass gasification and syngas release behavior using hot slag. RSC Adv 4:62105–62114

    CAS  Google Scholar 

  69. Shatokha VI, Sokolovskaya IV (2012) Study on effect of coal treatment with blast furnace slag on char reactivity in air. Ironmak Steelmak 39:439–445

    CAS  Google Scholar 

  70. Cahyono RB et al (2013) Integrated coal-pyrolysis tar reforming using steelmaking slag for carbon composite and hydrogen production. Fuel 109:439–444

    Google Scholar 

  71. Qin Y, Lv X, Bai C, Qiu G (2012) Dry granulation of molten blast furnace slag and heat recovery from obtained particles. In: Energy technology 2012: carbon dioxide management and other technologies. Wiley, Hoboken, pp 187–194. https://doi.org/10.1002/9781118365038.ch24

  72. Qin Yuelin, Lv Xuewei, Bai Chenguang, Qiu Guibao, Chen Pan (2012) Waste heat recovery from blast furnace slag by chemical reactions. JOM 64:997–1001

    CAS  Google Scholar 

  73. Luo S, Yi C, Zhou Y (2013) Bio-oil production by pyrolysis of biomass using hot blast furnace slag. Renew Energy 50:373–377

    CAS  Google Scholar 

  74. Matsuura H, Tsukihashi F (2012) Thermodynamic calculation of generation of H2 gas by reaction between FeO in steelmaking and water vapor. ISIJ Int 52:1503–1512

    CAS  Google Scholar 

  75. Sato M, Matsuura H, Tsukihashi F (2012) Generation behavior of H2 gas by reaction between FeO-containing slag and H2O-Ar gas. ISIJ Int 52:1500–1502

    CAS  Google Scholar 

  76. Malvoisin B et al (2013) High-purity hydrogen gas from the reaction between BOF steel slag and water in the 473-673 K range. Int J Hydrogen Energy 38:7382–7393

    CAS  Google Scholar 

  77. Nakano J, Bennett J (2014) CO2 and H2O gas conversion into CO and H2 using highly exothermic reactions induced by mixed industrial slags. Int J Hydrogen Energy 39:4954–4958

    CAS  Google Scholar 

  78. Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. Conf Pap Energy 2013:1–9

    Google Scholar 

  79. Weber G, Fu Q, Wu H (2006) Energy efficiency of an integrated process based on gasification for hydrogen production from biomass. Dev Chem Eng Miner Process 14:33–48

    Google Scholar 

  80. Liu H et al (2003) Mineral reaction and morphology change during gasification of coal in CO2 at Elevated temperatures. Fuel 82:523–530

    CAS  Google Scholar 

  81. Ma Z et al (2014) Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, part 2: char gasification. Energy Fuels 28:1846–1853

    CAS  Google Scholar 

  82. Kashiwaya Y, Nakauchi T, Pham KS, Akiyama S (2007) Crystallization behaviors concerned with TTT and CCT diagrams of blast furnace slag using hot thermocouple technique. ISIJ Int 47:44–52

    CAS  Google Scholar 

  83. Esfahani (2014) Crystallization of synthetic blast furnace slags pertaining to heat recovery, Ph.D. Thesis, University of Toronto

  84. Rowe DM (2006) Thermoelectric waste heat recovery as a renewable energy source. Int J Innov Energy Syst Power 1:13–23

    Google Scholar 

  85. Twaha S, Zhu J, Yan Y, Li B (2016) A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement. Renew Sustain Energy Rev 65:698–726

    CAS  Google Scholar 

  86. Liu W et al (2017) New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater Today Phys 1:50–60

    Google Scholar 

  87. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479

    CAS  Google Scholar 

  88. Kawamotok H (2009) R&D Trends in high efficiency thermoelectric conversion materials for waste heat recovery. Sci Technol Trends 54–69

  89. Nomura T, Okinaka N, Akiyama T (2010) Technology of latent heat storage for high temperature application: a review. ISIJ Int 50:1229–1239

    CAS  Google Scholar 

Download references

Funding

Funding was provided by Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2017-06419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Barati.

Additional information

The contributing editor for this article was Annelies Malfliet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, M., Jahanshahi, S. Granulation and Heat Recovery from Metallurgical Slags. J. Sustain. Metall. 6, 191–206 (2020). https://doi.org/10.1007/s40831-019-00256-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-019-00256-4

Keywords

Navigation