Skip to main content
Log in

Comparative Analysis of Snowfall Accumulation and Gauge Undercatch Correction Factors from Diverse Data Sets: In Situ, Satellite, and Reanalysis

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Despite its importance for hydrology and water resources, accurate estimation of snowfall rate over snow-covered regions has remained a major observational challenge from both in-situ and remote sensing instruments. Snowfall accumulation can be measured by either accumulating snowfall estimates or measuring snowpack properties such as Snow Water Equivalent (SWE) and mass. By focusing on snowfall over snow accumulation period and using case studies and long-term average (2003 to 2015) over CONUS, this study compares snowfall accumulation from gauge stations (using GPCC and PRISM products), satellite products (GPCP and the suite of IMERG products), and reanalysis (ERA-interim, ERA5, and MERRA-2). Changes in SWE based on the recent UA-SWE product together with mass change observation from GRACE were used for assessment of precipitation products. We also investigated two popular gauge undercatch correction factors (CFs) used to mitigate precipitation undercatch in GPCC and GPCP. The results show that snow accumulation from most of the products is bounded by GPCC with and without correction, highlighting the critical importance of selecting proper CFs for gauge-undercatch correction. The CF based on Legates and Willmott method was found to be more consistent with the SWE-based analysis than CF based on the Fuchs method. Reanalysis show very similar spatial pattern among themselves, but represent large variation in simulating snow accumulation, with ERA-interim showing the least accumulation and MERRA-2 showing the highest accumulation and closest to the snow accumulation suggested by SWE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., Nelkin, E.: The Version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4(6), 1147–1167 (2003)

    Article  Google Scholar 

  • Adler, R., Sapiano, M., Huffman, G., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., Shin, D.-B.: The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere. 9(4), 138 (2018)

    Article  Google Scholar 

  • Barrett, A. P.: National operational hydrologic remote sensing center Snow Data Assimilation System (SNODAS) products at NSIDC. NSIDC Special Rep. 11, 19 pp (2003). Available online at http://nsidc.org/pubs/documents/special/nsidc_special_report_11.pdf

  • Bartsotas, N.S., Anagnostou, E.N., Nikolopoulos, E.I., Kallos, G.: Investigating satellite precipitation uncertainty over complex terrain. Journal of Geophysical Research: Atmospheres. 123(10), 5346–5359 (2018). https://doi.org/10.1029/2017JD027559

    Article  Google Scholar 

  • Behrangi, A., Khakbaz, B., Jaw, T.C., AghaKouchak, A., Hsu, K., Sorooshian, S.: Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol. 397(3–4), 225–237 (2011). https://doi.org/10.1016/j.jhydrol.2010.11.043

    Article  Google Scholar 

  • Behrangi, A., Tian, Y., Lambrigtsen, B.H., Stephens, G.L.: What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res. 50(6), 4893–4905 (2014a). https://doi.org/10.1002/2013wr014566

    Article  Google Scholar 

  • Behrangi, A., Andreadis, K., Fisher, J.B., Turk, F.J., Granger, S., Painter, T., Das, N.: Satellite-Based Precipitation Estimation and Its Application for Streamflow Prediction over Mountainous Western U.S. Basins. Journal of Applied Meteorology and Climatology. 53(12), 2823–2842 (2014b). https://doi.org/10.1175/jamc-d-14-0056.1

    Article  Google Scholar 

  • Behrangi, A., Wong, S., Mallick, K., Fisher, J.B.: On the net surface water exchange rate estimated from remote-sensing observation and reanalysis. Int. J. Remote Sens. 35(6), 2170–2185 (2014c). https://doi.org/10.1080/01431161.2014.889866

    Article  Google Scholar 

  • Behrangi, A., Guan, B., Neiman, P.J., Schreier, M., Lambrigtsen, B.: On the quantification of atmospheric Rivers precipitation from space: composite assessments and case studies over the eastern North Pacific Ocean and the Western United States. J. Hydrometeorol. 17(1), 369–382 (2016a). https://doi.org/10.1175/jhm-d-15-0061.1

    Article  Google Scholar 

  • Behrangi, A., Christensen, M., Richardson, M., Lebsock, M., Stephens, G., Huffman, G.J., Bolvin, D., Adler, R.F., Gardner, A., Lambrigtsen, B., Fetzer, E.: Status of high-latitude precipitation estimates from observations and reanalyses. Journal of Geophysical Research: Atmospheres. 121(9), 4468–4486 (2016b). https://doi.org/10.1002/2015jd024546

    Article  Google Scholar 

  • Behrangi, A., Gardner, A.S., Reager, J.T., Fisher, J.B.: Using GRACE to constrain precipitation amount over cold mountainous basins. Geophys. Res. Lett. 44(1), 219–227 (2017). https://doi.org/10.1002/2016gl071832

    Article  Google Scholar 

  • Behrangi, A., Gardner, A., Reager, J.T., Fisher, J.B., Yang, D., Huffman, G.J., Adler, R.F.: Using GRACE to estimate snowfall accumulation and assess gauge Undercatch corrections in high latitudes. J. Clim. 31(21), 8689–8704 (2018a). https://doi.org/10.1175/jcli-d-18-0163.1

    Article  Google Scholar 

  • Behrangi, A., Bormann, K.J., Painter, T.H.: Using the airborne snow observatory to assess remotely sensed snowfall products in the California Sierra Nevada. Water Resour. Res. 54(10), 7331–7346 (2018b). https://doi.org/10.1029/2018wr023108

    Article  Google Scholar 

  • Berg, W., L’Ecuyer, T., Kummerow, C.: Rainfall climate regimes: the relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteorol. Climatol. 45(3), 434–454 (2006). https://doi.org/10.1175/jam2331.1

    Article  Google Scholar 

  • Broxton, P.D., Zeng, X., Dawson, N.: Why do global Reanalyses and land data assimilation products underestimate snow water equivalent? J. Hydrometeorol. 17(11), 2743–2761 (2016a). https://doi.org/10.1175/jhm-d-16-0056

    Article  Google Scholar 

  • Broxton, P.D., Dawson, N., Zeng, X.: Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth. Earth and Space Science. 3(6), 246–256 (2016b). https://doi.org/10.1002/2016EA000174

    Article  Google Scholar 

  • Chen, S., Hong, Y., Kulie, M., Behrangi, A., Stepanian, P.M., Cao, Q., You, Y., Zhang, J., Hu, J., Zhang, X.: Comparison of snowfall estimates from the NASA CloudSat cloud profiling radar and NOAA/NSSL multi-radar multi-sensor system. J. Hydrol. 541, 862–872 (2016). https://doi.org/10.1016/j.jhydrol.2016.07.047

    Article  Google Scholar 

  • Christensen, M.W., Behrangi, A., L’ecuyer, T.S., Wood, N.B., Lebsock, M.D., Stephens, G.L.: Arctic observation and reanalysis integrated system: a new data product for validation and climate study. Bull. Am. Meteorol. Soc. 97(6), 907–916 (2016). https://doi.org/10.1175/bams-d-14-00273.1

    Article  Google Scholar 

  • Copernicus Climate Change Service (C3S): ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus climate change service Climate Data Store (CDS), date of access March 2019 (2017)

  • Daly, C., Neilson, R.P., Phillips, D.L.: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. 33(2), 140–158 (1994)

    Article  Google Scholar 

  • Daly, C., Gibson, W.P., Taylor, G.H., Johnson, G.L., Pasteris, P.: A knowledge-based approach to the statistical mapping of climate. Clim. Res. 22, 99–113 (2002)

    Article  Google Scholar 

  • Dawson, N., Broxton, P., Zeng, X.: Evaluation of remotely sensed snow water equivalent and snow cover extent over the contiguous United States. J. Hydrometeorol. 19(11), 1777–1791 (2018). https://doi.org/10.1175/jhm-d-18-0007.1

    Article  Google Scholar 

  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., et al.: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011). https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dingman, S.L.: Physical Hydrology, 2nd edn. Waveland Press, Long Grove (2008)

    Google Scholar 

  • Ferraro, R.R., Peters-Lidard, C.D., Hernandez, C., Turk, F.J., et al.: An evaluation of microwave land surface Emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens. 51(1), 378–398 (2013). https://doi.org/10.1109/tgrs.2012.2199121

    Article  Google Scholar 

  • Fuchs, T., Rapp, J., Rubel, F., Rudolf, B.: Correction of synoptic precipitation observations due to systematic measuring errors with special regard to precipitation phases. Phys. Chem. Earth. B29, 689–693 (2001)

    Article  Google Scholar 

  • Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., et al.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate. 30(14), 5419–5454 (2017). https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  • Hong, Y., Hsu, K.L., Sorooshian, S., Gao, X.G.: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 43(12), 1834–1852 (2004)

  • Huffman, G.J., Adler, R.F., Arkin, P., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., McNab, A., Rudolf, B., Schneider, U.: The global precipitation climatology project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc. 78(1), 5–20 (1997)

    Article  Google Scholar 

  • Huffman, G.J., Adler, R.F., Morrissey, M.M., Bolvin, D.T., Curtis, S., Joyce, R., McGavock, B., Susskind, J.: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2(1), 36–50 (2001)

    Article  Google Scholar 

  • Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P., Stocker, E.F.: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear. Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology. 8(1), 38–55 (2007). https://doi.org/10.1175/jhm560.1

    Article  Google Scholar 

  • Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G.: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett. 36(17) (2009). https://doi.org/10.1029/2009gl040000

  • Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., et al.: Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation (V5.2), p. 35 (2018)

  • Joyce, R.J., Xie, P.: Kalman filter–based CMORPH. J. Hydrometeorol. 12(6), 1547–1563 (2011). https://doi.org/10.1175/jhm-d-11-022.1

    Article  Google Scholar 

  • Kelly, R.: The AMSR-E Snow Depth Algorithm: Description and Initial Results. Journal of The Remote Sensing Society of Japan. 29(1), 307–317 (2009). https://doi.org/10.11440/rssj.29.307

    Article  Google Scholar 

  • Lebsock, M.D., L’Ecuyer, T.S.: The retrieval of warm rain from CloudSat. J. Geophys. Res. Atmos. 116(D20), (2011). https://doi.org/10.1029/2011JD016076

  • Legates, D., Willmott, C.J.: Mean seasonal and spatial variability in gauge-corrected. Global Precipitation. Internat. J. Climatol. 10, 111–127 (1990)

    Article  Google Scholar 

  • Maggioni, V., Nikolopoulos, E.I., Anagnostou, E.N., Borga, M.: Modeling satellite precipitation errors over mountainous terrain: the influence of gauge density, seasonality, and temporal resolution. IEEE Trans. Geosci. Remote Sens. 55(7), 4130–4140 (2017). https://doi.org/10.1109/TGRS.2017.2688998

    Article  Google Scholar 

  • Painter, T.H., Berisford, D.F., Boardman, J.W., Bormann, K.J., et al.: The airborne snow observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ. 184, 139–152 (2016)

    Article  Google Scholar 

  • Palerme, C., Kay, J.E., Genthon, C., L’Ecuyer, T., Wood, N.B., Claud, C.: How much snow falls on the Antarctic ice sheet? Cryosphere Discuss. 8(1), 1279–1304 (2014). https://doi.org/10.5194/tcd-8-1279-2014

    Article  Google Scholar 

  • Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A.P., Black, J., Thériault, J.M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., Gutmann, E.: How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 93(6), 811–829 (2012). https://doi.org/10.1175/bams-d-11-00052.1

    Article  Google Scholar 

  • Reichle, R.H., Draper, C.S., Liu, Q., Girotto, M., Mahanama, S.P.P., Koster, R.D., De Lannoy, G.J.M.: Assessment of MERRA-2 land surface hydrology estimates. J. Clim. 30(8), 2937–2960 (2017). https://doi.org/10.1175/JCLI-D-16-0720.1

    Article  Google Scholar 

  • Rubel, F., Hantel, M.: BALTEX 1/6-degree daily precipitation climatology 1996–1998. Meteorog. Atmos. Phys. 77(1), 155–166 (2001). https://doi.org/10.1007/s007030170024

    Article  Google Scholar 

  • Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., Rudolf, B.: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115(1–2), 15–40 (2014)

    Article  Google Scholar 

  • Schneider, U., Finger, P., Meyer-Christoffer, A., Rustemeier, E., Ziese, M., Becker, A.: Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere. 8(12), (2017). https://doi.org/10.3390/atmos8030052

  • Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M.: GPCC monitoring product: near real-time monthly land-surface precipitation from rain-gauges based on SYNOP and CLIMAT data. (2018). https://doi.org/10.5676/DWD_GPCC/MP_M_V6_100

  • Serreze, M.C., Clark, M.P., Armstrong, R.L., McGinnis, D.A., Pulwarty, R.S.: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res. 35(7), 2145–2160 (1999). https://doi.org/10.1029/1999WR900090

    Article  Google Scholar 

  • Shige, S., Kida, S., Ashiwake, H., Kubota, T., Aonashi, K.: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteorol. Climatol. 52(1), 242–254 (2013). https://doi.org/10.1175/jamc-d-12-074.1

    Article  Google Scholar 

  • Simmons, A.J., Willett, K.M., Jones, P.D., Thorne, P.W., Dee, D.P.: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. Journal of Geophysical Research. 115(D1), (2010). https://doi.org/10.1029/2009jd012442

  • Smalley, M., L’Ecuyer, T., Lebsock, M., Haynes, J.: A comparison of precipitation occurrence from the NCEP stage IV QPE product and theCloudSatCloud profiling radar. J. Hydrometeorol. 15(1), 444–458 (2014). https://doi.org/10.1175/jhm-d-13-048.1

    Article  Google Scholar 

  • Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.: Atmos. 106(D7), 7183--7192 (2001). https://doi.org/10.1029/2000jd900719

  • Tedesco, M., Narvekar, P.S.: Assessment of the NASA AMSR-E SWE product. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 3(1), 141–159 (2010)

    Article  Google Scholar 

  • Tian, Y., Peters-Lidard, C.D., Harrison, K.W., Prigent, C., Norouzi, H., Aires, F., Boukabara, S.-A., Furuzawa, F.A., Masunaga, H.: Quantifying uncertainties in land-surface microwave emissivity retrievals. IEEE Trans. Geosci. Remote Sens. 52(2), 829–840 (2014). https://doi.org/10.1109/tgrs.2013.2244214

    Article  Google Scholar 

  • Watkins, M.M., Wiese, D.N., Yuan, D.-N., Boening, C., Landerer, F.W.: Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research: Solid Earth. 120(4), 2648–2671 (2015). https://doi.org/10.1002/2014jb011547

    Article  Google Scholar 

  • Wiese, D.N., Landerer, F.W., Watkins, M.M.: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52(9), 7490–7502 (2016). https://doi.org/10.1002/2016wr019344

    Article  Google Scholar 

  • Yang, D., Kane, D., Zhang, Z., Legates, D., Goodison, B.: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophysical Research Letters. 32(19), (2005). https://doi.org/10.1029/2005gl024057

  • Ye, H., Fetzer, E.J., Behrangi, A., Wong, S., Lambrigtsen, B.H., Wang, C.Y., Cohen, J., Gamelin, B.L.: Increasing daily precipitation intensity associated with warmer air temperatures over Northern Eurasia. J. Clim. 29(2), 623–636 (2016). https://doi.org/10.1175/jcli-d-14-00771.1

Download references

Acknowledgments

The GPCP daily V1.3 was obtained from National Centers for Environmental Information (NESDIS), https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp daily/access/, IMERG and MERRA-2 data were obtained Goddard Earth Sciences Data and Information Services Center (GES DISC). ERA-Interim data was accessed from the ECMWF website, www.ecmwf.int/en/forecasts/datasets/archivedatasets/reanalysis-datasets/era-interim. ERA5 data provided by Copernicus Climate Change Service (C3S). PRISM was obtained from the Climate Group at Oregon State University (http://www.prism.oregonstate.edu), GPCC data were obtained from Deutscher Wetterdienst (DWD) (https://www.dwd.de/EN/ourservices/gpcc/gpcc.html). UA-SWE product was accessed through Dr. Patrick Broxton of U. of Arizona, also available from the NSIDC: https://nsidc.org/data/nsidc-0719/versions/1. Financial support was also made available from NASA GRACE and GRACE-FO (NNH15ZDA001N–GRACE) and NASA MEaSUREs (NNH17ZDA001N-MEASURES) awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Behrangi.

Additional information

Responsible Editor: Dong-Bin Shin.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panahi, M., Behrangi, A. Comparative Analysis of Snowfall Accumulation and Gauge Undercatch Correction Factors from Diverse Data Sets: In Situ, Satellite, and Reanalysis. Asia-Pacific J Atmos Sci 56, 615–628 (2020). https://doi.org/10.1007/s13143-019-00161-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-019-00161-6

Keywords

Navigation