Skip to main content
Log in

Smart Cotton Fabric with CO2-Responsive Wettability for Controlled Oil/Water Separation

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Stimuli-responsive materials with switchable wettability have promising practical applications in oil/water separation. A novel CO2-responsive cotton fabric for controlled oil/water separation was fabricated based on mussel-inspired reaction and polymerized with 2-(dimethylamino)ethyl methacrylate (DMAEMA). As expected, the modified fabric exhibited switchable hydrophilicity and hydrophobicity after CO2/N2 alternation, and it could be used for gravity-driven CO2-controlled oil/water separation. Water was selectively penetrated through the fabric and separated from oil after treating by CO2. A reversed wettability could be generated through simply treated with N2. It is expected that the as-prepared fabrics could be applied in smart oil/water separation due to the attractive properties of CO2-switchable system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vahidhabanu S, Abideen Idowu A, Karuppasamy D, Ramesh Babu B, Vineetha M. Microwave initiated facile formation of sepiolite-poly(dimethylsiloxane) nanohybrid for effective removal of congo red dye from aqueous solution. ACS Sustain Chem Eng. 2017;5(11):10361–70.

    Article  CAS  Google Scholar 

  2. Gupta P, Kandasubramanian B. Directional fluid gating by janus membranes with heterogeneous wetting properties for selective oil-water separation. ACS Appl Mater Interfaces. 2017;9(22):19102–13.

    Article  CAS  Google Scholar 

  3. Seddighi M, Hejazi SM. Water–oil separation performance of technical textiles used for marine pollution disasters. Mar Pollut Bull. 2015;96(1):286–93.

    Article  CAS  Google Scholar 

  4. Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A. Hygro-responsive membranes for effective oil–water separation. Nature Commun. 2012;3:1025.

    Article  Google Scholar 

  5. Kollarigowda RH, Abraham S, Montemagno CD. Antifouling cellulose hybrid biomembrane for effective oil/water separation. ACS Appl Mater Interfaces. 2017;9(35):29812–9.

    Article  CAS  Google Scholar 

  6. Chen F, Song J, Liu Z, Liu J, Zheng H, Huang S, Sun J, Xu W, Liu X. Atmospheric pressure plasma functionalized polymer mesh: an environmentally friendly and efficient tool for oil/water separation. ACS Sustain Chem Eng. 2016;4(12):6828–37.

    Article  CAS  Google Scholar 

  7. Hosny AY. Separating oil from oil-water emulsions by electroflotation technique. Sep Technol. 1996;6(1):9–17.

    Article  CAS  Google Scholar 

  8. Ge J, Zhao HY, Zhu HW, Huang J, Shi LA, Yu SH. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Adv Mater. 2016;28(47):10459–90.

    Article  CAS  Google Scholar 

  9. Stetsyshyn Y, Raczkowska J, Lishchynskyi O, Bernasik A, Kostruba A, Harhay K, Ohar H, Marzec MM, Budkowski A. Temperature-controlled three-stage switching of wetting, morphology, and protein adsorption. ACS Appl Mater Interfaces. 2017;9(13):12035–45.

    Article  CAS  Google Scholar 

  10. Frysali MA, Anastasiadis SH. Temperature- and/or pH-responsive surfaces with controllable wettability: from parahydrophobicity to superhydrophilicity. Langmuir. 2017;33(36):9106–14.

    Article  CAS  Google Scholar 

  11. Wagner N, Theato P. Light-induced wettability changes on polymer surfaces. Polymer. 2014;55(16):3436–53.

    Article  CAS  Google Scholar 

  12. Medeiros SF, Santos AM, Fessi H, Elaissari A. Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm. 2011;403(1):139–61.

    Article  CAS  Google Scholar 

  13. Che H, Huo M, Peng L, Ye Q, Guo J, Wang K, Wei Y, Yuan J. CO2-switchable drug release from magneto-polymeric nanohybrids. Polymer Chem. 2015;6(12):2319–26.

    Article  CAS  Google Scholar 

  14. Li M, Lei L, Zhang Q, Zhu S. CO2-breathing induced reversible activation of mechanophore within microgels. Macromol Rapid Commun. 2016;37(12):957–62.

    Article  Google Scholar 

  15. Su X, Jessop PG, Cunningham MF. Surfactant-free polymerization forming switchable latexes that can be aggregated and redispersed by CO2 removal and then readdition. Macromolecules. 2012;45(2):666–70.

    Article  CAS  Google Scholar 

  16. Lin S, Schattling P, Theato P. Thermo- and CO2-responsive linear polymers and hydrogels as CO2 capturing materials. Sci Adv Mater. 2015;7(5):948–55.

    Article  CAS  Google Scholar 

  17. Quek JY, Roth PJ, Evans RA, Davis TP, Lowe AB. Reversible addition-fragmentation chain transfer synthesis of amidine-based, CO2-responsive homo and AB diblock (Co) polymers comprised of histamine and their gas-triggered self-assembly in water. J Polym Sci Part A Polym Chem. 2013;51(2):394–404.

    Article  CAS  Google Scholar 

  18. Schattling P, Pollmann I, Theato P. Synthesis of CO2-responsive polymers by post-polymerization modification. React Funct Polym. 2014;75:16–21.

    Article  CAS  Google Scholar 

  19. Li N, Thia L, Wang X. A CO2-responsive surface with an amidine-terminated self-assembled monolayer for stimuli-induced selective adsorption. Chem Commun. 2014;50(30):4003–6.

    Article  CAS  Google Scholar 

  20. Che H, Huo M, Peng L, Fang T, Liu N, Feng L, Wei Y, Yuan J. CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew Chem Int Ed. 2015;54(31):8934–8.

    Article  CAS  Google Scholar 

  21. Dong L, Fan W, Tong X, Zhang H, Chen M, Zhao Y. A CO2-responsive graphene oxide/polymer composite nanofiltration membrane for water purification. J Mater Chem A. 2018;6(16):6785–91.

    Article  CAS  Google Scholar 

  22. Lafuma A, Quéré D. Superhydrophobic states. Nat Mater. 2003;2(7):457–60.

    Article  CAS  Google Scholar 

  23. Solomon BR, Hyder MN, Varanasi KK. Separating oil-water nanoemulsions using flux-enhanced hierarchical membranes. Sci Rep. 2014;4:5504.

    Article  CAS  Google Scholar 

  24. Ata MS, Liu Y, Zhitomirsky I. A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. RSC Adv. 2014;4(43):22716–32.

    Article  CAS  Google Scholar 

  25. Yah WO, Xu H, Soejima H, Ma W, Lvov Y, Takahara A. Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J Am Chem Soc. 2012;134(29):12134–7.

    Article  CAS  Google Scholar 

  26. Brzozowska AM, Parra-Velandia FJ, Quintana R, Xiaoying Z, Lee SSC, Chin-Sing L, Jańczewski D, Teo SLM, Vancso JG. Biomimicking micropatterned surfaces and their effect on marine biofouling. Langmuir. 2014;30(30):9165–75.

    Article  CAS  Google Scholar 

  27. Panda A, Varshney P, Mohapatra SS, Kumar A. Development of liquid repellent coating on cotton fabric by simple binary silanization with excellent self-cleaning and oil-water separation properties. Carbohyd Polym. 2018;181:1052–60.

    Article  CAS  Google Scholar 

  28. Richard E, Lakshmi RV, Aruna ST, Basu BJ. A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics. Appl Surf Sci. 2013;277:302–9.

    Article  CAS  Google Scholar 

  29. Liang L, Su M, Zheng C, Li J, Zhan H, Li X, Meng X. Fabrication of hydrophobic/oleophilic cotton fabric by mussel-inspired chemistry for oil/water separation. Fibers Polym. 2017;18(12):2307–14.

    Article  CAS  Google Scholar 

  30. Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL. Reversible nonpolar-to-polar solvent. Nature. 2005;436(7054):1102.

    Article  CAS  Google Scholar 

  31. Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL. Switchable surfactants. Science. 2006;313(5789):958–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant no. 51703130), Zhejiang Provincial Natural Science Foundation of China (Grant no. LY18E080018), Shaoxing Public Welfare Project (Grant no. 2017B70042), and the International Science and Technology Cooperation Project of Shaoxing University (Grant no. 2019LGGH1004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Meng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 6978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Dong, Y., Wang, H. et al. Smart Cotton Fabric with CO2-Responsive Wettability for Controlled Oil/Water Separation. Adv. Fiber Mater. 1, 222–230 (2019). https://doi.org/10.1007/s42765-019-00018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00018-7

Keywords

Navigation