Skip to main content

Advertisement

Log in

Novel preparation of poly(arylene ether sulfone amide)s via supported palladium-catalyzed carbonylative polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Two new aromatic diiodides with ether–sulfone linkages were synthesized via a one-step procedure. A series of poly(arylene ether sulfone amide)s were synthesized by a supported palladium-catalyzed polycondensation of aromatic diiodides having ether–sulfone linkages, aromatic diamines, and CO. Polycondensation reactions were conducted in N,N-dimethylacetamide using a magnetic nanoparticles-bound palladium(II) complex [Fe3O4@SiO2-2P-PdCl2] as the catalyst and 1,8-diazabicycle[5,4,0]-7-undecene as the base at 120 °C, yielding poly(arylene ether sulfone amide)s having inherent viscosities of 0.43–0.77 dL/g. The resulting polymers were soluble in polar aprotic solvents and showed glass transition temperatures in the 204–265 °C range, with 10% weight losses occurring at temperatures above 456 °C in nitrogen. Most of the polymers afforded transparent and tough films by solution-casting with tensile strengths of 71.8–82.2 MPa, Young’s moduli of 1.77–2.35 GPa, and elongations at break of 9.3–13.4%. More importantly, this supported palladium catalyst can facilely be separated from the product by simply using an external magnetic field and reused at least seven times with almost consistent activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cassidy PE (1980) Thermal stable polymer. Marcel Dekker, New York

    Google Scholar 

  2. Yang HH (1989) Aromatic high-strength fibers. Wiley, New York, pp 66–289

    Google Scholar 

  3. Liou GS, Hsiao SH (2002) Synthesis and properties of new soluble aromatic polyamides and polyimides on the basis of N, N′-bis(3-aminobenzoyl)-N, N′-diphenyl-1,4-phenylenediamine. J Polym Sci Part A Polym Chem 40:2564–2574

    Article  CAS  Google Scholar 

  4. Wu SC, Shu CF (2003) Synthesis and properties of soluble aromatic polyamides derived from 2,2′-bis(4-carboxyphenoxy)-9,9′-spirobifluorene. J Polym Sci Part A Polym Chem 41:1160–1166

    Article  CAS  Google Scholar 

  5. Liaw DJ, Hsu PN, Chen WH, Lin SL (2002) High glass transitions of new polyamides, polyimides, and poly(amide-imide)s containing a triphenylamine group: synthesis and characterization. Macromolecules 35:4669–4675

    Article  CAS  Google Scholar 

  6. Garcia JM, Garcia FC, Serna F, de laPena JL (2010) High-performance aromatic polyamides. Prog Polym Sci 35:623–686

    Article  CAS  Google Scholar 

  7. Johnson RN, Farnham AG, Clendinning RA, Hale WF, Merriam CN (1967) Poly(aryl ethers) by nucleophilic aromatic substitution. I. Synthesis and properties. J Polym Sci Part A Polym Chem 5:2375–2398

    Article  CAS  Google Scholar 

  8. Attwood TE, King T, Leslie VJ, Rose JB (1977) Poly(arylene ether sulphones) by polyetherification: 2. Polycondensations. Polymer 18:359–364

    Article  CAS  Google Scholar 

  9. Harris JE, Johnson RN (1985) Polysulfone. In: Mark HF, Bikales NB, Overberger CG, Menges G (eds) Encyclopedia of polymer science and engineering, vol 11, 2nd edn. Wiley, New York, p 196

    Google Scholar 

  10. Knight J, Wright WW (1983) Heat-resistant polymers. Plenum, New York, p 170

    Google Scholar 

  11. Brode GL, Kwiatkowski GT, Bedwin AW (1974) High temperature polymers. II. High temperature polymers from 4,4′-[sulfonylbis(p-phenyleneoxy)]dianiline. J Polym Sci Part A Polym Chem 12:575–587

    Article  Google Scholar 

  12. Chiriac C, Stille JK (1977) Polyaramides containing sulfone ether units. Macromolecules 10:712–713

    Article  CAS  Google Scholar 

  13. Mehdipour-Ataei S, Sarrafi Y, Hatami M, Akbarian-Feizi L (2005) Poly(sulfone ether amide amide)s as a new generation of soluble, thermally stable polymers. Eur Polym J 41:491–499

    Article  CAS  Google Scholar 

  14. Yoneyama M, Kakimoto M, Imai Y (1988) Novel synthesis of aromatic polyamides by palladium-catalyzed polycondensation of aromatic dibromides, aromatic diamines, and carbon monoxide. Macromolecules 21:1908–1911

    Article  CAS  Google Scholar 

  15. Yoneyama M, Kakimoto M, Imai Y (1989) Synthesis of aliphatic-aromatic polyamides by palladium-catalyzed polycondensation of aliphatic diamines, aromatic dibromides, and carbon monoxide. J Polym Sci Part A Polym Chem 27:1985–1991

    Article  CAS  Google Scholar 

  16. Turner SR, Perry RJ, Blevins RW (1992) High molecular weight aromatic polyamides from aromatic diiodides and diamines. Macromolecules 25:4819–4820

    Article  CAS  Google Scholar 

  17. Perry RJ, Turner SR, Blevins RW (1993) Synthesis of linear, high molecular weight aromatic polyamides by the palladium-catalyzed carbonylation and condensation of aromatic diiodides, diamines, and carbon monoxide. Macromolecules 26:1509–1513

    Article  CAS  Google Scholar 

  18. Perry RJ, Turner SR, Blevins RW (1994) Palladium-catalyzed formation of poly(imide-amides). 1. Reactions with diiodo imides and diamines. Macromolecules 27:4058–4082

    Article  CAS  Google Scholar 

  19. Ueda M, Yokoo T (1994) Synthesis of poly(ether-ketone-amide)s by palladium-catalyzed polycondensation of aromatic dibromides containing ether ketone structure, aromatic diamines, and carbon monoxide. J Polym Sci Part A Polym Chem 32:2065–2071

    Article  CAS  Google Scholar 

  20. Ueda M, Yokoo T, Nakamura T (1994) Synthesis of poly(ether-sulfone-amide)s by palladium-catalyzed polycondensation of aromatic dibromides containing ether sulfone structure, aromatic diamines, and carbon monoxide. J Polym Sci Part A Polym Chem 32:2989–2995

    Article  CAS  Google Scholar 

  21. Perry RJ, Turner SR, Blevins RW (1995) Palladium-catalyzed formation of poly(imide-amides). 2. Reactions with chloroiodophthalimides and diamines. Macromolecules 28:2607–2610

    Article  CAS  Google Scholar 

  22. Rabani G, Kraft A (2002) Synthesis of poly(ether-esteramide) elastomers by palladium-catalyzed polycondensation of aromatic diiodides with telechelic diamines and carbon monoxide. Macromol Rapid Commun 23:375–379

    Article  CAS  Google Scholar 

  23. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075

    Article  CAS  Google Scholar 

  24. Nasir Baig RB, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Chem Commun 49:752–770

    Article  Google Scholar 

  25. Wang D, Astruc D (2014) Fast-growing field of magnetically recyclable nano-catalysts. Chem Rev 114:6949–6985

    Article  CAS  Google Scholar 

  26. Stevens PD, Li G, Fan J, Yen M, Gao Y (2005) Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chem Commun 35:4435–4437

    Article  CAS  Google Scholar 

  27. Baruwati B, Guin D, Manorama SV (2007) Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions. Org Lett 9:5377–5380

    Article  CAS  Google Scholar 

  28. Jin M-J, Lee D-H (2010) A practical heterogeneous catalyst for the Suzuki, Sonogashira, and Stille coupling reactions of unreactive aryl chlorides. Angew Chem Int Ed 49:1119–1122

    Article  CAS  Google Scholar 

  29. Shylesh S, Wang L, Thiel WR (2010) Palladium(II)-phosphine complexes supported on magnetic nanoparticles: filtration-free, recyclable catalysts for Suzuki–Miyaura cross-coupling reactions. Adv Synth Catal 352:425–432

    Article  CAS  Google Scholar 

  30. Li P, Wang L, Zhang L, Wang G-W (2012) Magnetic nanoparticles-supported palladium: a highly efficient and reusable catalyst for the Suzuki, Sonogashira, and Heck reactions. Adv Synth Catal 354:1307–1318

    Article  CAS  Google Scholar 

  31. Tang H, Huang B, Zhu X, Cai M (2018) Synthesis of poly(ether ketone amide)s containing 4-aryl-2,6-diphenylpyridine moieties by a heterogeneous palladium-catalyzed polycondensation of aromatic diiodides, aromatic diamines, and carbon monoxide. Polym Adv Technol 29:2204–2215

    Article  CAS  Google Scholar 

  32. Huang B, Wang P, Zhu X, Cai M (2019) Synthesis of poly(ether ketone amide)s by a heterogeneous palladium-catalyzed polycondensation of aromatic diiodides, diamines, and carbon monoxide. High Perform Polym 31:425–437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21664008), the Natural Science Foundation of Jiangxi Province of China (No. 20172BAB203015), and Key Laboratory of Functional Small Organic Molecule, Ministry of Education (No. KLFS-KF-201704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhong Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Li, J., Yan, T. et al. Novel preparation of poly(arylene ether sulfone amide)s via supported palladium-catalyzed carbonylative polymerization. Polym. Bull. 77, 1951–1968 (2020). https://doi.org/10.1007/s00289-019-02843-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02843-7

Keywords

Navigation