Skip to main content
Log in

A New Class of Uniformly Accurate Numerical Schemes for Highly Oscillatory Evolution Equations

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We introduce a new methodology to design uniformly accurate methods for oscillatory evolution equations. The targeted models are envisaged in a wide spectrum of regimes, from non-stiff to highly oscillatory. Thanks to an averaging transformation, the stiffness of the problem is softened, allowing for standard schemes to retain their usual orders of convergence. Overall, high-order numerical approximations are obtained with errors and at a cost independent of the regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note, however, that this series is convergent for a linear right-hand side in (1.1) with bounded operator and for all sufficiently small \(\varepsilon \).

  2. To facilitate the convergence of the fixed-point iterations for large \(\varepsilon \), for all \(\varepsilon \) one can multiply \(g_\theta \) in (4.3) or \(h_\theta \) in (4.11) by a damping term such as \(\exp ({-\varepsilon ^2})=1+{\mathcal {O}}(\varepsilon ^2)\) which does not affect the uniform accuracy of order two.

  3. Indeed, it can be shown that the local error and hence the global error of order two of the integral schemes \(S^\mathrm{RK2}_{\Delta t}\) and \(S^\mathrm{midpoint}_{\Delta t}\) applied to any system \(\dot{y}=f(t,y)\) involves only the norms of the second-order derivative \(\ddot{y}\) of the solution and the derivatives \(\partial _t f,\partial _y f,\partial _{yy} f,\partial _{yt} f\) of the vector field, and in contrast to a standard Runge–Kutta method, it does not depend on \(\dddot{y},\partial _{tt} f\).

  4. This discretization turns out to be exact for the Hénon–Heiles problem, due to the low degree of the involved trigonometric polynomials.

References

  1. W. Bao and X. Dong. Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer. Math., 120(2):189–229, 2012.

    Article  MathSciNet  Google Scholar 

  2. S. Baumstark, E. Faou, and K. Schratz. Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. to appear in Math. Comp., 2017.

  3. M. P. Calvo, P. Chartier, A. Murua, and J. M. Sanz-Serna. Numerical stroboscopic averaging for ODEs and DAEs. Appl. Numer. Math., 61(10):1077–1095, 2011.

    Article  MathSciNet  Google Scholar 

  4. F. Castella, P. Chartier, F. Méhats, and A. Murua. Stroboscopic averaging for the nonlinear Schrödinger equation. Found. Comput. Math., 15(2):519–559, 2015.

    Article  MathSciNet  Google Scholar 

  5. P. Chartier, N. Crouseilles, M. Lemou, and F. Méhats. Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numer. Math., 129(2):211–250, 2015.

    Article  MathSciNet  Google Scholar 

  6. P. Chartier, M. Lemou, and F. Méhats. Highly-oscillatory evolution equations with multiple frequencies: averaging and numerics. Numer. Math., 136(4):907–939, 2017.

    Article  MathSciNet  Google Scholar 

  7. P. Chartier, J. Makazaga, A. Murua, and G. Vilmart. Multi-revolution composition methods for highly oscillatory differential equations. Numer. Math., 128(1):167–192, 2014.

    Article  MathSciNet  Google Scholar 

  8. P. Chartier, A. Murua, and J. M. Sanz-Serna. Higher-order averaging, formal series and numerical integration I: B-series. Found. Comput. Math., 10(6):695–727, 2010.

    Article  MathSciNet  Google Scholar 

  9. P. Chartier, A. Murua, and J. M. Sanz-Serna. Higher-order averaging, formal series and numerical integration II: The quasi-periodic case. Found. Comput. Math., 12(4):471–508, 2012.

    Article  MathSciNet  Google Scholar 

  10. P. Chartier, A. Murua, and J. M. Sanz-Serna. Higher-order averaging, formal series and numerical integration III: error bounds. Found. Comput. Math., 15(2):591–612, 2015.

    Article  MathSciNet  Google Scholar 

  11. N. Crouseilles, M. Lemou, and F. Méhats. Asymptotic preserving schemes for highly oscillatory Vlasov-Poisson equations. J. Comput. Phys., 248:287–308, 2013.

    Article  MathSciNet  Google Scholar 

  12. E. Faou and K. Schratz. Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime. Numer. Math., 126(3):441–469, 2014.

    Article  MathSciNet  Google Scholar 

  13. E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006. Structure-preserving algorithms for ordinary differential equations.

  14. M. Hénon and C. Heiles. The applicability of the third integral of motion: Some numerical experiments. Astronom. J., 69:73–79, 1964.

    Article  MathSciNet  Google Scholar 

  15. S. Machihara. The nonrelativistic limit of the nonlinear Klein-Gordon equation. Funkcial. Ekvac., 44(2):243–252, 2001.

    MathSciNet  MATH  Google Scholar 

  16. S. Machihara, K. Nakanishi, and T. Ozawa. Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations. Math. Ann., 322(3):603–621, 2002.

    Article  MathSciNet  Google Scholar 

  17. N. Masmoudi and K. Nakanishi. From nonlinear Klein-Gordon equation to a system of coupled nonlinear Schrödinger equations. Math. Ann., 324(2):359–389, 2002.

    Article  MathSciNet  Google Scholar 

  18. L. M. Perko. Higher order averaging and related methods for perturbed periodic and quasi-periodic systems. SIAM J. Appl. Math., 17:698–724, 1969.

    Article  MathSciNet  Google Scholar 

  19. G. R. W. Quispel and D. I. McLaren. A new class of energy-preserving numerical integration methods. J. Phys. A, 41(4):045206, 7, 2008.

    Article  MathSciNet  Google Scholar 

  20. J. A. Sanders and F. Verhulst. Averaging methods in nonlinear dynamical systems, volume 59 of Applied Mathematical Sciences. Springer-Verlag, New York, 1985.

Download references

Acknowledgements

This work was partially supported by the Swiss National Science Foundation, Grants No. 200020_144313/1 and 200021_162404 and by the ANR Project Moonrise ANR-14-CE23-0007-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Chartier.

Additional information

Communicated by Christian Lubich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section is devoted to the proof of Proposition 3.2 and Theorem 3.3. We first recall the two following basic results from [4]:

Lemma A.1

(See Castella et al. [4]) Let \(0< \delta < \rho \le 2R\). Assume that the function \((\theta ,u) \in {\mathbb {T}}\times \mathcal{K}_\rho \mapsto \varphi _\theta (u) \in X_{\mathbb {C}}\) is analytic, and that \(\varphi _\theta \) is a near-identity mapping, in the sense that

$$\begin{aligned} \Vert \varphi - \mathrm{Id}\Vert _\rho \le \frac{\delta }{2}. \end{aligned}$$

Then \(\Vert \partial _u \varphi \Vert _{\rho -\delta } \le \frac{3}{2}\), the mapping \(\partial _u \langle \varphi \rangle ^{-1}\) is well defined and analytic on \(\mathcal{K}_{\rho -\delta }\) with \(\Vert \partial _u \langle \varphi \rangle ^{-1} \Vert _{\rho -\delta } \le 2\), and the mappings \((\theta ,u) \in {\mathbb {T}}\times \mathcal{K}_{\rho -\delta } \mapsto \Lambda (\varphi )_{\theta }(u)\) and \((\theta ,u) \in {\mathbb {T}}\times K_{\rho -\delta } \mapsto \Gamma ^\varepsilon (\varphi )_{\theta }(u)\) are well defined and analytic. In addition, the following bounds hold for all \(\varepsilon \ge 0\),

$$\begin{aligned} \Vert \Lambda (\varphi )\Vert _{\rho -\delta } \le 4 \, M \quad \text{ and } \quad \Vert \Gamma ^\varepsilon (\varphi ) - \mathrm{Id}\Vert _{\rho -\delta } \le 4 \, M \, \varepsilon . \end{aligned}$$

Lemma A.1 shows that starting from a function \((\theta ,u) \in {\mathbb {T}}\times \mathcal{K}_{2R} \mapsto \varphi _\theta (u) \in X_{\mathbb {C}}\), we can consider iterates \(\left( \Gamma ^\varepsilon \right) ^k (\varphi )_\theta \) at the cost of a gradual thinning of their domains of analyticity. The following contraction property holds.

Lemma A.2

(See Castella et al. [4]) Let \(0< \delta < \rho \le 2R\) and consider two periodic, near-identity mappings \((\theta ,u) \in {\mathbb {T}}\times \mathcal{K}_\rho \mapsto \varphi _\theta (u)\) and \((\theta ,u) \in {\mathbb {T}}\times \mathcal{K}_\rho \mapsto {\tilde{\varphi }}_\theta (u)\), analytic on \(\mathcal{K}_\rho \) and satisfying

$$\begin{aligned} \Vert \varphi -\mathrm{Id}\Vert _\rho \le \frac{\delta }{2} \quad \text{ and } \quad \Vert {\tilde{\varphi }}-\mathrm{Id}\Vert _\rho \le \frac{\delta }{2}. \end{aligned}$$

Then, the following estimates hold for all \(\varepsilon \ge 0\),

$$\begin{aligned} \Vert \Lambda (\varphi ) - \Lambda ({\tilde{\varphi }})\Vert _{\rho -\delta }\le & {} \frac{16 \, M}{\delta } \Vert \varphi - {\tilde{\varphi }}\Vert _{\rho } \quad \text{ and } \quad \Vert \Gamma ^\varepsilon (\varphi ) - \Gamma ^\varepsilon ({\tilde{\varphi }})\Vert _{\rho -\delta } \\\le & {} \frac{16 \, M \varepsilon }{\delta } \Vert \varphi - {\tilde{\varphi }}\Vert _\rho . \end{aligned}$$

Proof of Proposition 3.2

We assume that all \(\Phi ^{[k]}\) are defined by (2.4) in the stroboscopic case (all functions \(G^{[k]}\) are taken null). The following properties were already proved in [4]:

  1. (i)

    the maps \(\Phi ^{[k]}\) and \(F^{[k]} := \langle \partial _u \Phi ^{[k]} \rangle ^{-1} \langle f \circ \Phi ^{[k]} \rangle \) are well defined and analytic on \(K_{R_k}\) for all \(k=0,\ldots ,n+1\);

  2. (ii)

    the estimates,

    $$\begin{aligned} \left\| \Phi ^{[k]}-\mathrm{id}\right\| _{R_{k}}&\le \frac{r_n}{2}, \quad \left\| F^{[k]}\right\| _{R_{k+1}} \le 2M \; \text{ and } \; \left\| \Phi ^{[k+1]}-\Phi ^{[k]}\right\| _R \\&\le C \left( 2 (n+1) \frac{\varepsilon }{\varepsilon _0} \right) ^k, \end{aligned}$$

    hold for some positive constant C independent of n, k and \(\varepsilon \).

From Eq. (2.4) with \(G^{[k+1]} \equiv 0\) and Assumption 3.1, it is obvious that \(\Phi ^{[k]}\) is \((p+1)\) times continuously differentiable w.r.t. \(\theta \). We have furthermore, for \(0 \le k \le n\)

$$\begin{aligned} \partial _\theta \Phi ^{[k+1]}_\theta = \varepsilon \left( f_\theta \circ \Phi ^{[k]}_\theta - \partial _u \Phi ^{[k]}_\theta F^{[k]}\right) \end{aligned}$$

so that, by differentiating \(\nu \le p\) times w.r.t. \(\theta \) with the help of the Leibniz and the Faà di Bruno formulae, we obtain

$$\begin{aligned} \frac{1}{\varepsilon } \partial ^{\nu +1}_\theta \Phi ^{[k+1]}_\theta&= \partial _\theta ^\nu f_\theta \circ \Phi ^{[k]}_\theta + \sum _{q=1}^\nu \left( \begin{array}{c} \nu \\ q \end{array} \right) \sum _\mathbf{i} C^{q}_\mathbf{i} (\partial ^{\nu -q}_\theta \partial ^{|\mathbf{i}|}_u f_\theta ) \circ \Phi ^{[k]}_\theta \\&\quad \left( \left( \partial _\theta \Phi ^{[k]}_\theta \right) ^{i_1}, \ldots ,\left( \partial ^q_\theta \Phi ^{[k]}_\theta \right) ^{i_q} \right) \\&\quad -\partial _\theta ^\nu \partial _u \Phi ^{[k]}_\theta F^{[k]} \end{aligned}$$

where the inner sum runs over multi-indices \(\mathbf{i}=(i_1,\ldots ,i_q) \in {\mathbb {N}}^q\) such that \(i_1+2i_2+\ldots +qi_q=q\) and where \(|\mathbf{i}|=i_1+\cdots +i_q\) and

$$\begin{aligned} C^{q}_\mathbf{i}=\frac{q!}{i_1! i_2! 2!^{i_2}\ldots i_q!q!^{i_q}}. \end{aligned}$$

Owing to (ii), for \(u \in \mathcal{K}_{R_{k+1}}\), \(\Phi ^{[k]}_\theta (u)\) takes its values in \(\mathcal{K}_{R_{k+1}+r_n/2}\), a set on which \(\partial _\theta ^j \partial _u^i f_\theta \) is bounded (due to Assumption 3.1 and Cauchy estimates for analytic functions) as follows:

$$\begin{aligned} \left\| \partial _\theta ^j \partial _u^i f \right\| _{R_{k+1}+r_n/2} \le \frac{1}{(2R-(R_{k+1}+r_n/2))^i} M = \frac{M}{(k+\frac{1}{2})^i r_n^i}. \end{aligned}$$

Hence, if we denote \(\alpha _{k,\nu }=\Vert \partial ^\nu _\theta \Phi ^{[k]}\Vert _{R_k}/(\varepsilon M)\), for \(\nu \ge 1\), then we have

$$\begin{aligned} \forall k \ge 1, \quad \forall \nu \ge 1, \quad \alpha _{k+1,\nu +1} \le 1 + \frac{2 \varepsilon M \alpha _{k,\nu }}{r_n} + \sum _{q=1}^\nu \left( \begin{array}{c} \nu \\ q \end{array} \right) \sum _\mathbf{i} C^{q}_\mathbf{i} \frac{(\varepsilon M)^{|\mathbf {i}|} \alpha _k^\mathbf{{i}}}{r_n^{|\mathbf i|} (k+\frac{1}{2})^{|\mathbf i|} } \end{aligned}$$

where we denote \(\alpha _k^\mathbf{{i}} =\prod _{j=1}^q \alpha _{k,j}^{i_j}\) and use that (owing to (ii) and a Cauchy estimate)

$$\begin{aligned} \left\| \partial _u \partial _\theta ^\nu \Phi ^{[k]} \, F^{[k]} \right\| _{R_{k+1}} \le \frac{1}{r_n} \left\| \partial _\theta ^\nu \Phi ^{[k]} \right\| _{R_{k}} \left\| F^{[k]} \right\| _{R_{k+1}} \le \frac{2 M \left\| \partial _\theta ^\nu \Phi ^{[k]} \right\| _{R_{k}}}{r_n}. \end{aligned}$$

Finally, the assumption that \((n+1) \varepsilon \le \varepsilon _0 = \frac{R}{8M}\) leads to the inequality

$$\begin{aligned} \alpha _{k+1,\nu +1} \le 1 + \frac{\alpha _{k,\nu }}{4}+ \sum _{q=1}^\nu \left( \begin{array}{c} \nu \\ q \end{array} \right) \sum _\mathbf{i} C^{q}_\mathbf{i} \frac{\alpha _k^\mathbf{{i}}}{(8 k+4)^{|\mathbf i|} } . \end{aligned}$$
(A.1)

We now introduce the generating functions for \(\xi \in {\mathbb {C}}\),

$$\begin{aligned} g_k(\xi ) = \sum _{\nu \ge 1} \alpha _{k,\nu } \frac{\xi ^\nu }{\nu !}, \quad k=1,\ldots \end{aligned}$$

A direct estimation gives \(\alpha _{1,1} \le 2\) and \(\alpha _{1,\nu } \le 1\) for \(\nu \ge 2\), so that \(0 \le g_1(\xi ) \le \xi +e^\xi -1\) for all \(\xi \in {\mathbb {R}}_+\) and from (A.1), we obtain (owing to the Leibniz and the Faà di Bruno formulae)

$$\begin{aligned} \alpha _{k+1,\nu +1} \le \frac{\alpha _{k,\nu }}{4}+ \sum _{q=0}^\nu \left( \begin{array}{c} \nu \\ q \end{array} \right) \left. \frac{d^q}{d\xi ^q} \exp \left( \frac{g_k(\xi )}{8 k+4}\right) \right| _{\xi =0} = \frac{\alpha _{k,\nu }}{4} + G^{(\nu )}_k(0) \end{aligned}$$

where

$$\begin{aligned} G_k(\xi ) = \exp \left( \xi +\frac{g_k(\xi )}{8 k+4}\right) \end{aligned}$$

so that, using \(\alpha _{k+1,1} \le 4\), we have for \(\xi \in {\mathbb {R}}_+\)

$$\begin{aligned} g_{k+1}(\xi ) \le 3 \xi + \frac{1}{4} \int _0^\xi g_k(\mathrm{s}) {\text {d}}s + \int _0^\xi G_k(s) {\text {d}}s. \end{aligned}$$

Noticing that \(\sup _{0 \le \xi \le 1} g_k(\xi ) = g_k(1)\), the previous inequality leads to

$$\begin{aligned} g_{k+1}(1) \le 3 + \frac{1}{4} g_k(1) + (e-1) \exp \left( \frac{g_k(1)}{8 k +4}\right) \end{aligned}$$

and an easy induction shows that the sequence \((g_k(1))_{k \ge 1}\) is upper bounded by 8. We conclude the proof by applying Cauchy estimates as follows:

$$\begin{aligned} \forall 1\le & {} k \le n+1, \, \forall 1 \le \nu \le p+1, \quad \alpha _{k,\nu } = \left| \frac{d^\nu g_k}{d\xi ^\nu } (0) \right| \le \frac{\nu ! \, \sup _{|\xi | \le 1} |g_k(\xi )|}{1^\nu } \\\le & {} \nu ! \, g_k(1) \le 8 \, \nu ! \end{aligned}$$

\(\square \)

Proof of Lemma 3.4

Under assumptions (3.9), it has been shown in [4] that:

  1. (a)

    \(\Vert \partial _u \varphi \Vert _{\rho -\delta } \le \frac{3}{2}\), the mapping \( \langle \partial _u \varphi \rangle ^{-1}\) is analytic on \(\mathcal{K}_{\rho -\delta }\) and obeys \(\Vert \langle \partial _u \varphi \rangle ^{-1} \Vert _{\rho -\delta } \le 2\);

  2. (b)

    the mappings \(\Lambda (\varphi )_{\theta }(u)\) and \(\Gamma ^\varepsilon (\varphi )_{\theta }(u)\) are analytic on \(\mathcal{K}_{\rho -\delta }\) for all \(\theta \in {\mathbb {T}}\), and

    $$\begin{aligned} \forall 0< \varepsilon < \varepsilon _0, \quad \Vert \Lambda (\varphi )\Vert _{\rho -\delta } \le 4 \, M \quad \text{ and } \quad \Vert \Gamma ^\varepsilon (\varphi ) - \mathrm{Id}\Vert _{\rho -\delta } \le 4 \, M \, \varepsilon . \end{aligned}$$

Now, on the one hand, for a multi-index \(\mathbf{i}=(i_1,\ldots ,i_q) \in {\mathbb {N}}^q\), the algebraic identity

$$\begin{aligned} \prod _{j=1}^q X_j^{i_j} - \prod _{j=1}^q Y_j^{i_j} = \sum _{j=1}^q (X_j-Y_j) \prod _{l=1}^{j-1} Y_l^{i_l} \prod _{l=j+1}^{q} X_l^{i_l} \sum _{r=1}^{i_j} X_j^{i_j-r} Y_j^{r-1} \end{aligned}$$

leads, for any \((\Delta _1, \ldots , \Delta _q) \in X_{{\mathbb {C}}}^q\) and any \(({\tilde{\Delta }}_1, \ldots , {\tilde{\Delta }}_q) \in X_{{\mathbb {C}}}^q\), to

$$\begin{aligned}&\left\| \partial _u^{|\mathbf {i}|} f \circ {\tilde{\varphi }} \; (\Delta _1^{i_1}, \ldots ,\Delta _q^{i_q}) - \partial _u^{|\mathbf {i}|} f \circ {\tilde{\varphi }} \; ({\tilde{\Delta }}_1^{i_1}, \ldots ,{\tilde{\Delta }}_q^{i_q}) \right\| _{\rho -\delta } \nonumber \\&\le \Vert \partial _u^{|\mathbf {i}|} f \Vert _{\rho -\delta /2} \, \sum _{j=1}^{q} \Vert \Delta _j -{\tilde{\Delta }}_j\Vert \, \prod _{l=1}^{j-1} \Vert \Delta _l\Vert ^{i_l} \, \prod _{l=j+1}^{q} \Vert {\tilde{\Delta }}_l\Vert ^{i_l} \, \sum _{r=1}^{i_j} \Vert \Delta _j\Vert ^{i_j-r} \Vert {\tilde{\Delta }}_j\Vert ^{r-1}. \end{aligned}$$
(A.2)

On the other hand, the Faà di Bruno’s formula with \(1 \le \nu < p\) gives

$$\begin{aligned}&\partial _\theta ^\nu \left( f_\theta \circ \varphi _\theta - f_\theta \circ {\tilde{\varphi }}_\theta \right) = \partial _\theta ^\nu f_\theta \circ \varphi _\theta -\partial _\theta ^\nu f_\theta \circ {\tilde{\varphi }}_\theta \\&\quad + \sum _{q=1}^\nu \left( \begin{array}{c} \nu \\ q\end{array} \right) \sum _\mathbf{i} C_\mathbf{i}^{q} \partial ^{\nu -q}_\theta \partial ^{|\mathbf{i}|}_u f_\theta \circ \varphi _\theta \left( (\partial _\theta \varphi _\theta )^{i_1}, \ldots ,(\partial ^q_\theta \varphi _\theta )^{i_q} \right) \\&\quad - \sum _{q=1}^\nu \left( \begin{array}{c} \nu \\ q\end{array} \right) \sum _\mathbf{i} C_\mathbf{i}^{q} \partial ^{\nu -q}_\theta \partial ^{|\mathbf{i}|}_u f_\theta \circ {\tilde{\varphi }}_\theta \left( (\partial _\theta {\tilde{\varphi }}_\theta )^{i_1}, \ldots ,(\partial ^q_\theta {\tilde{\varphi }}_\theta )^{i_q} \right) \end{aligned}$$

with the notations of Theorem 3.2. Hence, using the decomposition in (A.2) we have

$$\begin{aligned}&\Vert \partial _\theta ^\nu \left( f_\theta \circ \varphi _\theta - f_\theta \circ {\tilde{\varphi }}_\theta \right) \Vert _{\rho -\delta } \le \Vert \partial _u \partial _\theta ^\nu f_\theta \Vert _{\rho -\delta /2} \; \Vert \varphi - {\tilde{\varphi }}\Vert _{\rho -\delta }\\&\quad + \sum _{q=1}^\nu \left( \begin{array}{c} \nu \\ q\end{array} \right) \sum _\mathbf{i} C_\mathbf{i}^{q} \; \beta ^\mathbf{i} \; \Vert \partial ^{\nu -q}_\theta \partial ^{|\mathbf{i}|+1}_u f \Vert _{\rho -\delta /2} \, \Vert \varphi - {\tilde{\varphi }}\Vert _{\rho -\delta } \\&\quad + \sum _{q=1}^\nu \left( \begin{array}{c} \nu \\ q\end{array} \right) \sum _\mathbf{i} C_\mathbf{i}^{q} \; \beta ^\mathbf{i} \; \Vert \partial ^{\nu -q}_\theta \partial ^{|\mathbf{i}|}_u f \Vert _{\rho -\delta /2} \sum _{j=1}^q \frac{i_j}{\beta _j} \Vert \partial _\theta ^j (\varphi - {\tilde{\varphi }})\Vert _{\rho -\delta } \end{aligned}$$

Upon using Cauchy estimates, we obtain

$$\begin{aligned}&\Vert \partial _\theta ^\nu \left( f \circ \varphi - f \circ {\tilde{\varphi }} \right) \Vert _{\rho -\delta } \le \frac{2M}{\delta } \; \Vert \varphi - {\tilde{\varphi }}\Vert _{\rho -\delta } + \frac{2M}{\delta } \Vert \varphi - {\tilde{\varphi }}\Vert _{\rho -\delta } \;\\&\qquad \sum _{q=1}^\nu \left( \begin{array}{c} \nu \\ q\end{array} \right) \sum _\mathbf{i} {\tilde{C}}_\mathbf{i}^{q} \, \left( \frac{16 M \varepsilon }{\delta }\right) ^{|\mathbf{i}|} \\&\qquad + \frac{1}{8 \varepsilon } \sum _{q=1}^\nu \left( \begin{array}{c} \nu \\ q\end{array} \right) \sum _\mathbf{i} {\tilde{C}}_\mathbf{i}^{q} \, \left( \frac{16 M \varepsilon }{\delta }\right) ^{|\mathbf{i}|} \sum _{j=1}^q \frac{i_j}{j!} \, \Vert \partial _\theta ^j (\varphi - {\tilde{\varphi }})\Vert _{\rho -\delta } \\&\quad \le \frac{2M}{\delta } P_\nu \left( \frac{16 M \varepsilon }{\delta }\right) \Vert \varphi - {\tilde{\varphi }}\Vert _{\rho ,\nu } \end{aligned}$$

where we denote \({\tilde{C}}_\mathbf{i}^q = C_\mathbf{i}^q \; \prod _{j=1}^q j!^{i_j}\) and

$$\begin{aligned} P_\nu (\xi ) = 1+\sum _{q=1}^\nu \left( \begin{array}{c} \nu \\ q\end{array} \right) \sum _\mathbf{i} {\tilde{C}}_\mathbf{i}^{q} \, \left( \xi ^{|\mathbf{i}|} + |\mathbf{i}| \, \xi ^{|\mathbf{i}|-1}\right) = \left. \frac{d^\nu }{d x^\nu } \left( \frac{ e^{x+\frac{\xi x}{1-x}} }{1-x} \right) \right| _{x=0}. \end{aligned}$$

Considering now the second part of \(\partial _\theta ^\nu (\Lambda (\varphi )_\theta -\Lambda ({\tilde{\varphi }})_\theta )\) and denoting \(F=\langle \partial _u \varphi \rangle ^{-1} \langle f \circ \varphi \rangle \) and \({\tilde{F}}=\langle \partial _u {\tilde{\varphi }} \rangle ^{-1} \langle f \circ {\tilde{\varphi }} \rangle \), we have for \(\nu \ge 1\)

$$\begin{aligned} \left\| \partial _\theta ^\nu (\partial _u \varphi \, F - \partial _u {\tilde{\varphi }} \, {\tilde{F}})\right\| _{\rho -\delta }&\le \left\| \partial _\theta ^\nu \partial _u \varphi \right\| _{\rho -\delta } \left\| F-{\tilde{F}} \right\| _{\rho -\delta } \\&\quad + \left\| \partial _\theta ^\nu \partial _u \varphi - \partial _\theta ^\nu \partial _u {\tilde{\varphi }} \right\| _{\rho -\delta } \left\| {\tilde{F}} \right\| _{\rho -\delta } \\&\le \frac{8 M \varepsilon }{\delta } \left\| F-{\tilde{F}} \right\| _{\rho -\delta } + \frac{2 M}{\delta } \Vert \partial _\theta ^\nu (\varphi - {\tilde{\varphi }})\Vert _{\rho } \end{aligned}$$

Denoting \(A_\theta (u)=\partial _u \varphi _{\theta }(u)\) and \({\tilde{A}}_\theta (u)=\partial _u {\tilde{\varphi }}_{\theta }(u)\), we have

$$\begin{aligned} \Vert F-{\tilde{F}}\Vert _{\rho -\delta }&\le \Vert \langle A\rangle ^{-1}\Vert _{\rho -\delta } \; \Vert \langle f \circ \varphi - f \circ {\tilde{\varphi }}\rangle \Vert _{\rho -\delta } \\&+\Vert \langle A\rangle ^{-1}-\langle {\tilde{A}}\rangle ^{-1}\Vert _{\rho -\delta } \; \Vert \langle f \circ {\tilde{\varphi }}\rangle \Vert _{\rho -\delta } \\&\le \frac{8M}{\delta } \; \Vert \varphi - {\tilde{\varphi }}\Vert _{\rho } \end{aligned}$$

where we have used the bound in (a) \(\Vert \langle A\rangle ^{-1}\Vert _{\rho -\delta } \le 2\), \(\Vert \langle {\tilde{A}}\rangle ^{-1}\Vert _{\rho -\delta } \le 2\) and the inequality

$$\begin{aligned} \Vert \langle A\rangle ^{-1}-\langle {\tilde{A}}\rangle ^{-1}\Vert _{\rho -\delta } \le \Vert \langle A\rangle ^{-1}\Vert _{\rho -\delta } \Vert \langle {\tilde{A}}\rangle ^{-1}\Vert _{\rho -\delta } \Vert A-{\tilde{A}}\Vert _{\rho -\delta } \le \frac{4}{\delta } \Vert \varphi - {\tilde{\varphi }}\Vert _\rho . \end{aligned}$$

Finally, we obtain

$$\begin{aligned} \left\| \partial _\theta ^\nu (\partial _u \varphi \, F - \partial _u {\tilde{\varphi }} \, {\tilde{F}})\right\| _{\rho -\delta }&\le \frac{64 M^2 \varepsilon }{\delta ^2} \; \Vert \varphi - {\tilde{\varphi }}\Vert _{\rho }+ \frac{2 M}{\delta } \Vert \partial _\theta ^\nu \varphi -\partial _\theta ^\nu {\tilde{\varphi }}\Vert _{\rho }. \end{aligned}$$
(A.3)

Collecting all terms, we finally have

$$\begin{aligned} \Vert \partial _\theta ^\nu (\Lambda (\varphi )-\Lambda ({\tilde{\varphi }}))\Vert _{\rho -\delta } \le \frac{2M}{\delta } Q_\nu \left( \frac{16 M \varepsilon }{\delta }\right) \Vert \varphi - {\tilde{\varphi }}\Vert _{\rho ,\nu } \end{aligned}$$

with \(Q_\nu (\xi ) = 1+2 \xi + P_\nu (\xi )\). By a Cauchy estimate, it holds that

$$\begin{aligned} \forall \xi \ge 0, \quad P_\nu (\xi ) \le 2^{\nu +1} \sqrt{e} \, e^{\xi } \, \nu ! \quad \text{ and } \quad Q_\nu (0) \le Q_\nu (\xi ) \le 2^{\nu +1} \sqrt{e} \, e^{\xi } \, \nu ! + 2 \xi + 1. \end{aligned}$$

The corresponding bound for \(\Gamma ^\varepsilon \) is then obtained straightforwardly. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chartier, P., Lemou, M., Méhats, F. et al. A New Class of Uniformly Accurate Numerical Schemes for Highly Oscillatory Evolution Equations. Found Comput Math 20, 1–33 (2020). https://doi.org/10.1007/s10208-019-09413-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-019-09413-3

Keywords

Mathematics Subject Classification

Navigation