Skip to main content
Log in

Evolution of ferroelectric and piezoelectric response by heat treatment in pseudocubic BiFeO3–BaTiO3 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Heat treatment of ceramics is an important process to tailor the fine electromechanical properties. To explore the criteria for optimized heat treatment in a perovskite structure of (1–x)Bi1.05FeO3xBaTiO3 (BF–BT100x) system, the structural phase relation, ferroelectric and piezoelectric response of BF–BT36 and BF–BT40 ceramics prepared by furnace cooling (FC) and quenching process were investigated. The X-ray diffraction examination showed single pseudocubic perovskite structure for all the ceramics. The homogenous microstructure was obtained for all ceramics with relatively large grain size in the furnace cooled samples. Well saturated ferroelectric hysteresis loops and enhanced piezoelectric constant (d33 = 97 pC/N) were achieved by quenching process. Dielectric curve of BF–BT36 showed large dielectric constant at its Curie temperature, however, BF–BT40 showed diffused relaxor-like dielectric anomalies. Quenched BF–BT36 samples showed typical butterfly like field induced strain curves, however negative strain decreased in BF–BT40 ceramics. From these investigated study, it is observed that BF–BT ceramics are very sensitive to the heat treatment process (furnace cooling and quenching) on the dielectric, electromechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Uchino, Piezoelectric actuators and ultrasonic motors vol. 1 (Kluwer Academic publishers, Dordrecht, 1997)

    Google Scholar 

  2. J. Rödel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  Google Scholar 

  3. Y. Hiruma, H. Nagata, T. Takenaka, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. J. Appl. Phys. 104(12), 124106 (2008)

    Article  Google Scholar 

  4. A. Maqbool, A. Hussain, J.U. Rahman, T. Kwon Song, W.-J. Kim, J. Lee, et al., Enhanced electric field-induced strain and ferroelectric behavior of (Bi0.5Na0.5)TiO3–BaTiO3–SrZrO3 lead-free ceramics. Ceram. Int. 40(8), 11905–11914 (2014)

    Article  CAS  Google Scholar 

  5. A. Hussain, A. Maqbool, J.S. Kim, T.K. Song, M.H. Kim, W.J. Kim, S.S. Kim, Sodium excess ta-modified (K0.5Na0.5)NbO3 ceramics prepared by reactive template grain growth method. Int. J. Appl. Ceram. Technol. 12(1), 228–234 (2015)

    Article  CAS  Google Scholar 

  6. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87(2), 855–862 (2000)

    Article  CAS  Google Scholar 

  7. M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, I.K. Jeong, High-performance lead-free piezoceramics with high curie temperatures. Adv. Mater. 27(43), 6976–6982 (2015)

    Article  CAS  Google Scholar 

  8. T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J. Appl. Phys. 108(7), 074107 (2010)

    Article  Google Scholar 

  9. A. Maqbool, A. Hussain, J.U. Rahman, R.A. Malik, T.K. Song, M.H. Kim, W.J. Kim, J. Korean Phys. Soc. 68(12), 1430–1438 (2016)

    Article  Google Scholar 

  10. T. Rojac, M. Kosec, D. Damjanovic, Large electric-field induced strain in BiFeO3 ceramics. J. Am. Ceram. Soc. 94(12), 4108–4111 (2011)

    Article  CAS  Google Scholar 

  11. R.A. Malik, A. Zaman, A. Hussain, A. Maqbool, T.K. Song, W.J. Kim, Y.S. Sung, J. Eur. Ceram. Soc. 38(4), 2259–2263 (2018)

    Article  CAS  Google Scholar 

  12. Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3–BaTiO3 ceramics. J. Am. Ceram. Soc. 96, 3163–3168 (2013)

    CAS  Google Scholar 

  13. S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1−x) BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92(12), 2957–2961 (2009)

    Article  CAS  Google Scholar 

  14. F. Ichiro, M. Ryuta, N. Kouichi, K. Nobuhiro, S. Mikio, W. Takayuki, et al., Structural, dielectric, and piezoelectric properties of Mn-doped BaTiO3–bi(Mg1/2Ti1/2)O3–BiFeO3 ceramics. Jpn. J. Appl. Phys. 50, 09ND07 (2011)

    Article  Google Scholar 

  15. D. Kim, M. Lee, J. Park, M.-H. Kim, T. Song, S. Kim, et al., Ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 ceramics. J. Electroceram. 33(1-2), 37–41 (2014)

    Article  CAS  Google Scholar 

  16. M.H. Lee, J.S. Park, D.J. Kim, R.C. Kambale, M.H. Kim, T.K. Song, H.J. Jung, S.W. Kim, H.I. Choi, W.J. Kim, S.S. Kim, K.W. Jang, D. Do, Ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 solid solution ceramics. Ferroelectrics 452(1), 7–12 (2013)

    Article  CAS  Google Scholar 

  17. J. Chen, J. Cheng, Enhanced thermal stability of lead-free high temperature 0.75BiFeO3–0.25BaTiO3 ceramics with excess bi content. J. Alloys Compd. 589, 115–119 (2014)

    Article  CAS  Google Scholar 

  18. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, H. Wang, Piezoelectric properties and temperature stabilities of Mn-and cu-modified BiFeO3–BaTiO3 high temperature ceramics. J. Eur. Ceram. Soc. 33(6), 1177–1183 (2013)

    Article  CAS  Google Scholar 

  19. R.A. Malik, A. Hussain, A. Zaman, A. Maqbool, J.U. Rahman, T.K. Song, W.J. Kim, M.H. Kim, RSC Adv. 5(117), 96953–96964 (2015)

    Article  CAS  Google Scholar 

  20. N.H. Khansur, T. Rojac, D. Damjanovic, C. Reinhard, K.G. Webber, J.A. Kimpton, J. Am. Ceram. Soc. 98(12), 3884–3890 (2015)

    Article  CAS  Google Scholar 

  21. L. Luo, N. Jiang, F. Lei, Y. Guo, Q. Zheng, D. Lin, Phase transition, ferroelectric and piezoelectric properties of bi(Mg0.5Zr0.5)O3-modified BiFeO3–BaTiO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 25, 1736–1744 (2014)

    Article  CAS  Google Scholar 

  22. A. Hussain, A. Maqbool, R.A. Malik, J.-H. Lee, Y.S. Sung, T.K. Song, M.H. Kim, Ceram. Int. 43, S204–S208 (2017)

    Article  CAS  Google Scholar 

  23. R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, C.W. Ahn, J.U. Rahman, T.K. Song, W.J. Kim, M.H. Kim, J. Am. Ceram. Soc. 98(12), 3842–3848 (2015)

    Article  CAS  Google Scholar 

  24. J.W. Woo, S.B. Baek, T.K. Song, M.H. Lee, J.U. Rahman, W.J. Kim, et al., Nonstoichiometric effects in the leakage current and electrical properties of bismuth ferrite ceramics. J. Korean Ceram. Soc. 54(4), 323–330 (2017)

    Article  CAS  Google Scholar 

  25. A. Hussain, J.U. Rahman, A. Maqbool, M.S. Kim, T.K. Song, W.J. Kim, M.H. Kim, Phys. Status Solidi A 211(8), 1704–1708 (2014)

    Article  CAS  Google Scholar 

  26. A Hussain, A. Maqbool, R.A. Malik, I. Qazi, T. K. Song, W. J. Kim, M. H. Kim, Phys. Status Solidi A 215(20), 1700942, (2018)

  27. D.S. Kim, C.I. Cheon, S.S. Lee, J.S. Kim, Appl. Phys. Lett. 109(20), 202902 (2016)

    Article  Google Scholar 

  28. A. Maqbool, A. Hussain, R.A. Malik, J.U. Rahman, A. Zaman, T.K. Song, M.H. Kim, Mater. Sci. Eng. B 199, 105–112 (2015)

    Article  CAS  Google Scholar 

  29. A. Zaman, R.A. Malik, A. Maqbool, A. Hussain, T. Ahmed, T.K. Song, W.J. Kim, M.-H. Kim, J. Electron. Mater. 47, 2103 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2018R1A2B6005044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myong-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqbool, A., Malik, R.A., Hussain, A. et al. Evolution of ferroelectric and piezoelectric response by heat treatment in pseudocubic BiFeO3–BaTiO3 ceramics. J Electroceram 41, 99–104 (2018). https://doi.org/10.1007/s10832-018-0172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0172-8

Keywords

Navigation