Skip to main content
Log in

On a Family of Critical Growth-Fragmentation Semigroups and Refracted Lévy Processes

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The growth-fragmentation equation models systems of particles that grow and split as time proceeds. An important question concerns the large time asymptotic of its solutions. Doumic and Escobedo (Kinet. Relat. Models, 9(2):251–297, [12]) observed that when growth is a linear function of the mass and fragmentations are homogeneous, the so-called Malthusian behaviour fails. In this work we further analyse the critical case by considering a piecewise linear growth, namely

$$c(x) = \textstyle\begin{cases} a_{{-}} x \quad x < 1 \\ a_{{+}} x \quad x \geq 1, \end{cases} $$

with \(0 < a_{{+}} < a_{{-}}\). We give necessary and sufficient conditions on the coefficients ensuring the Malthusian behaviour with exponential speed of convergence to an asymptotic profile, and also provide an explicit expression of the latter. Our approach relies crucially on properties of so-called refracted Lévy processes that arise naturally in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In the sequel we will refer to it also using the term ‘mass’.

  2. The existence of eigenelements has been proved also in the case of much more general generators. In particular, the fragmentation kernel does not need to be homogeneous.

  3. This means that its finite-dimensional distributions are given in the following way. Let \(0 \leq t_{1} < \cdots < t_{n} \leq t\), and \(F: \mathbb{R}^{n} \to \mathbb{R_{+}}\). Then,

    $$ \tilde{\mathbb{E}}_{x} \bigl[F(Y_{t_{1}}, \dots , Y_{t_{n}} )\bigr] = \mathbb{E}_{x}\bigl[ \mathcal{M}'_{t} F(X_{t_{1}}, \dots , X_{t_{n}} ) \bigr], \quad x > 0. $$

References

  1. Baccelli, F., Mcdonald, D.R., Reynier, J.: A mean-field model for multiple TCP connections through a buffer implementing red. In: TREC (2002)

    Google Scholar 

  2. Balagué, D., Cañizo, J.A., Gabriel, P.: Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinet. Relat. Models 6(2), 219–243 (2013)

    Article  MathSciNet  Google Scholar 

  3. Banks, H.T., Sutton, K.L., Clayton Thompson, W., Bocharov, G., Roose, D., Schenkel, T., Meyerhans, A.: Estimation of cell proliferation dynamics using CFSE data. Bull. Math. Biol. 73(1), 116–150 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bell, G.I., Anderson, E.C.: Cell growth and division: I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophys. J. 7(4), 329–351 (1967)

    Article  Google Scholar 

  5. Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Bertoin, J.: On a Feynman-Kac approach to growth-fragmentation semigroups and their asymptotic behaviors (2018). arXiv:1804.04905

  7. Bertoin, J., Watson, A.R.: Probabilistic aspects of critical growth-fragmentation equations. Adv. Appl. Probab. 48(A), 37–61 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bertoin, J., Watson, A.R.: A probabilistic approach to spectral analysis of growth-fragmentation equations. J. Funct. Anal. 274(8), 2163–2204 (2018)

    Article  MathSciNet  Google Scholar 

  9. Cáceres, M.J., Cañizo, J.A., Mischler, S.: Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations. J. Math. Pures Appl. (9) 96(4), 334–362 (2011)

    Article  MathSciNet  Google Scholar 

  10. Calvez, V., Lenuzza, N., Oelz, D., Deslys, J.-P., Laurent, P., Mouthon, F., Perthame, B.: Size distribution dependence of prion aggregates infectivity. Math. Biosci. 217(1), 88–99 (2009)

    Article  MathSciNet  Google Scholar 

  11. Cloez, B.: Limit theorems for some branching measure-valued processes. Adv. Appl. Probab. 49(2), 549–580 (2017)

    Article  MathSciNet  Google Scholar 

  12. Doumic, M., Escobedo, M.: Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinet. Relat. Models 9(2), 251–297 (2016)

    Article  MathSciNet  Google Scholar 

  13. Doumic, M., Hoffmann, M., Krell, N., Robert, L.: Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Bernoulli 21(3), 1760–1799 (2015)

    Article  MathSciNet  Google Scholar 

  14. Doumic Jauffret, M., Gabriel, P.: Eigenelements of a general aggregation-fragmentation model. Math. Models Methods Appl. Sci. 20(5), 757–783 (2010)

    Article  MathSciNet  Google Scholar 

  15. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York (1986)

    Book  Google Scholar 

  16. Khashayar, P., Perthame, B., Salort, D.: Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation. J. Math. Neurosci. (2014). https://doi.org/10.1186/2190-8567-4-14

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuznetsov, A., Kyprianou, A.E., Rivero, V.: The theory of scale functions for spectrally negative Lévy processes. In: Lévy Matters II. Lecture Notes in Math., vol. 2061, pp. 97–186. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Kyprianou, A.E., Loeffen, R.L.: Refracted Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 46(1), 24–44 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kyprianou, A.E., Pardo, J.C., Pérez, J.L.: Occupation times of refracted Lévy processes. J. Theor. Probab. 27(4), 1292–1315 (2014)

    Article  Google Scholar 

  20. Kyprianou, A.E.: Fluctuations of Lévy Processes with Applications. 2nd edn. Universitext. Springer, Heidelberg (2014). Introductory lectures

    Book  Google Scholar 

  21. Laurençot, P., Perthame, B.: Exponential decay for the growth-fragmentation/cell-division equation. Commun. Math. Sci. 7(2), 503–510 (2009)

    Article  MathSciNet  Google Scholar 

  22. Metz, J.A.J., Diekmann, O. (eds.): The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin (1986). Papers from the colloquium held in Amsterdam, 1983

    MATH  Google Scholar 

  23. Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press, Cambridge (2009). With a prologue by Peter W. Glynn

    Book  Google Scholar 

  24. Philippe, M.: Existence of a solution to the cell division eigenproblem. Math. Models Methods Appl. Sci. 16(7), 1125–1153 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. (9) 84(9), 1235–1260 (2005)

    Article  MathSciNet  Google Scholar 

  26. Mischler, S., Scher, J.: Spectral analysis of semigroups and growth-fragmentation equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33(3), 849–898 (2016)

    Article  MathSciNet  Google Scholar 

  27. Pakdaman, K., Perthame, B., Salort, D.: Relaxation and self-sustained oscillations in the time elapsed neuron network model. SIAM J. Appl. Math. 73(3), 1260–1279 (2013)

    Article  MathSciNet  Google Scholar 

  28. Perthame, B.: Transport Equations in Biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007)

    Book  Google Scholar 

  29. Perthame, B., Ryzhik, L.: Exponential decay for the fragmentation or cell-division equation. J. Differ. Equ. 210(1), 155–177 (2005)

    Article  MathSciNet  Google Scholar 

  30. Renaud, J.-F.: On the time spent in the red by a refracted Lévy risk process. J. Appl. Probab. 51(4), 1171–1188 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Cavalli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalli, B. On a Family of Critical Growth-Fragmentation Semigroups and Refracted Lévy Processes. Acta Appl Math 166, 161–186 (2020). https://doi.org/10.1007/s10440-019-00261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-019-00261-5

Keywords

Mathematics Subject Classification (2000)

Navigation