Skip to main content
Log in

Unimodal optimization using a genetic-programming-based method with periodic boundary conditions

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

This article describes a new genetic-programming-based optimization method using a multi-gene approach along with a niching strategy and periodic domain constraints. The method is referred to as Niching MG-PMA, where MG refers to multi-gene and PMA to parameter mapping approach. Although it was designed to be a multimodal optimization method, recent tests have revealed its suitability for unimodal optimization. The definition of Niching MG-PMA is provided in a detailed fashion, along with an in-depth explanation of two novelties in our implementation: the feedback of initial parameters and the domain constraints using periodic boundary conditions. These ideas can be potentially useful for other optimization techniques. The method is tested on the basis of the CEC’2015 benchmark functions. Statistical analysis shows that Niching MG-PMA performs similarly to the winners of the competition even without any parametrization towards the benchmark, indicating that the method is robust and applicable to a wide range of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Mult. Valued Logic Soft Comput. 17(2–3), 255–287 (2011)

    Google Scholar 

  2. N. Awad, M.Z. Ali, R.G. Reynolds, A differential evolution algorithm with success-based parameter adaptation for cec2015 learning-based optimization. in 2015 IEEE Congress on Evolutionary Computation (CEC), (2015), pp. 1098–1105. https://doi.org/10.1109/CEC.2015.7257012

  3. K.S. Babu, N. Balaji, Approximation of digital circuits using cartesian genetic programming. in 2016 International Conference on Communication and Electronics Systems (ICCES), (2016), pp. 1–6. https://doi.org/10.1109/CESYS.2016.7889978

  4. S. Bird, X. Li, Adaptively choosing niching parameters in a PSO. in Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO ’06, (ACM, New York, NY, USA, 2006), pp. 3–10. https://doi.org/10.1145/1143997.1143999

  5. M. Brameier, W. Banzhaf, A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evolut. Comput. 5(1), 17–26 (2001). https://doi.org/10.1109/4235.910462

    Article  MATH  Google Scholar 

  6. M. Castelli, L. Trujillo, L. Vanneschi, S. Silva, E. Z-Flores, P. Legrand, Geometric semantic genetic programming with local search (2015). https://doi.org/10.1145/2739480.2754795

  7. J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 1(1), 3–18 (2011). https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  8. G. Dick, Automatic identification of the niche radius using spatially-structured clearing methods. in IEEE Congress on Evolutionary Computation, (2010), pp. 1–8. https://doi.org/10.1109/CEC.2010.5586085

  9. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory. in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS ’95, (1995), pp. 39–43. https://doi.org/10.1109/MHS.1995.494215

  10. P.G. Espejo, S. Ventura, F. Herrera, A survey on the application of genetic programming to classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(2), 121–144 (2010). https://doi.org/10.1109/TSMCC.2009.2033566

    Article  Google Scholar 

  11. J. Gan, K. Warwick, Dynamic niche clustering: a fuzzy variable radius niching technique for multimodal optimisation in gas. in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), (2001), vol. 1, pp. 215–222. https://doi.org/10.1109/CEC.2001.934392

  12. S.M. Guo, J.S.H. Tsai, C.C. Yang, P.H. Hsu, A self-optimization approach for l-shade incorporated with eigenvector-based crossover and successful-parent-selecting framework on cec 2015 benchmark set. in 2015 IEEE Congress on Evolutionary Computation (CEC), (2015), pp. 1003–1010. https://doi.org/10.1109/CEC.2015.7256999

  13. M. Harman, Y. Jia, W.B. Langdon, J. Petke, I.H. Moghadam, S. Yoo, F. Wu, Genetic improvement for adaptive software engineering (keynote). in Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014, (ACM, New York, NY, USA, 2014), pp. 1–4. https://doi.org/10.1145/2593929.2600116

  14. M. Harman, W.B. Langdon, W. Weimer, Genetic programming for reverse engineering. in 2013 20th Working Conference on Reverse Engineering (WCRE), (2013), pp. 1–10. https://doi.org/10.1109/WCRE.2013.6671274

  15. M. Hinchliffe, H. Hiden, B. McKay, M. Willis, M. Tham, G. Barton, Modelling chemical process systems using a multi-gene genetic programming algorithm. in Late Breaking Papers at the Genetic Programming 1996 Conference Stanford University July 28-31, 1996, ed. by J.R. Koza (Stanford Bookstore, Stanford University, CA, USA, 1996), pp. 56–65. http://www.genetic-programming.org/gp96latebreaking.html. (print)

  16. J. Holland et al., Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, 1975)

    Google Scholar 

  17. S. Holm, A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  18. R.L. Iman, J.M. Davenport, Approximations of the critical region of the friedman statistic. Commun. Stat. Theory Methods 9(6), 571–595 (1980). https://doi.org/10.1080/03610928008827904

    Article  MATH  Google Scholar 

  19. J. Iott, R. Haftka, H. Adelman, L.R. Center, Selecting step sizes in sensitivity analysis by finite differences. NASA technical memorandum. National Aeronautics and Space Administration, Scientific and Technical Information Branch (1985). https://books.google.no/books?id=KggDAAAAIAAJ. Accessed 11 Dec 2019

  20. M. Jelasity, J. Dombi, GAS, a concept on modeling species in genetic algorithms. Artif. Intell. 99(1), 1–19 (1998). https://doi.org/10.1016/S0004-3702(97)00071-4

    Article  MathSciNet  MATH  Google Scholar 

  21. A.S. Koshiyama, D.M. Dias, A.V. Abs da Cruz, M.A.C. Pacheco, Numerical optimization by multi-gene genetic programming. in Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’13 Companion, (ACM, New York, NY, USA, 2013), pp. 145–146. https://doi.org/10.1145/2464576.2464651

  22. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, MA, USA, 1992)

    MATH  Google Scholar 

  23. W.B. Langdon, Genetic Improvement of Software for Multiple Objectives (Springer, Cham, 2015), pp. 12–28. https://doi.org/10.1007/978-3-319-22183-0_2

    Book  Google Scholar 

  24. W.B. Langdon, B.Y.H. Lam, M. Modat, J. Petke, M. Harman, Genetic improvement of gpu software. Genet. Program. Evolvable Mach. 18(1), 5–44 (2017). https://doi.org/10.1007/s10710-016-9273-9

    Article  Google Scholar 

  25. A.R. Leach, Molecular Modelling: Principles and Applications (Prentice Hall, Pearson Education, 2001)

    Google Scholar 

  26. X. Li, A. Engelbrecht, M.G. Epitropakis, Benchmark functions for cec’2013 special session and competition on niching methods for multimodal function optimization. Tech. rep, Evolutionary Computation and Machine Learning Group, RMIT University, Australia (2013)

  27. X. Li, M.G. Epitropakis, K. Deb, A. Engelbrecht, Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans. Evolut. Comput. 21(4), 518–538 (2017). https://doi.org/10.1109/TEVC.2016.2638437

    Article  Google Scholar 

  28. J.J. Liang, B.Y. Qu, P.N. Suganthan, Q. Chen, Problem definitions and evaluation criteria for the cec2015 competition on learning-based real parameter single objective optimization. Tech. Rep. 201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China (2014)

  29. Y. Liu, Z.L. Cheng, J. Xu, J. Yang, Q.W. Wang, Improvement and validation of genetic programming symbolic regression technique of silva and applications in deriving heat transfer correlations. Heat Transf. Eng. 37(10), 862–874 (2016). https://doi.org/10.1080/01457632.2015.1089745

    Article  Google Scholar 

  30. S. Luke, L. Panait, Lexicographic parsimony pressure. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), (Morgan Kaufmann Publishers, 2002), pp. 829–836

  31. S.W. Mahfoud, Crowding and preselection revisited. Parallel Problem Solving from Nat. 2, 27–36 (1992)

    Google Scholar 

  32. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. (Springer, London, 1996)

    Book  Google Scholar 

  33. J.F. Miller, M. Mohid, Function optimization using cartesian genetic programming. in Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’13 Companion, (ACM, New York, 2013), pp. 147–148. https://doi.org/10.1145/2464576.2464646

  34. A. Moraglio, K. Krawiec, C.G. Johnson, Geometric semantic genetic programming, in Parallel Problem Solving from Nature—PPSN XII, ed. by C.A.C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone (Springer, Berlin, 2012), pp. 21–31

    Chapter  Google Scholar 

  35. J. Ni, R.H. Drieberg, P.I. Rockett, The use of an analytic quotient operator in genetic programming. IEEE Trans. Evolut. Comput. 17(1), 146–152 (2013). https://doi.org/10.1109/TEVC.2012.2195319

    Article  Google Scholar 

  36. P. Nordin, F. Francone, W. Banzhaf, Explicitly defined introns and destructive crossover in genetic programming (1995)

  37. A. Petrowski, A clearing procedure as a niching method for genetic algorithms. in Proceedings of IEEE International Conference on Evolutionary Computation, (1996), pp. 798–803. https://doi.org/10.1109/ICEC.1996.542703

  38. R. Poli, W.B. Langdon, N.F. McPhee, A field guide to genetic programming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008). (With contributions by J. R. Koza)

  39. R.C.B.L. Póvoa, A.S. Koshiyama, D.M. Dias, P.L. Souza, B.A.C. Horta, Multi-modal optimization by multi-gene genetic programming. in 2018 IEEE Congress on Evolutionary Computation (CEC), (2018), pp. 1–8. https://doi.org/10.1109/CEC.2018.8477715

  40. J.C.F. Pujol, R. Poli, Parameter mapping: a genetic programming approach to function optimization. Int. J. Knowl. Based Intell. Eng. Syst. 12(1), 29–45 (2008). https://doi.org/10.3233/KES-2008-12104

    Article  Google Scholar 

  41. J.C.F. Pujol, R. Poli, A new combined crossover operator to evolve the architecture and the weights of neural networks using a dual representation. Tech. rep. (2009). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4921;ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1997/CSRP-97-12.ps.gz

  42. J.L. Rueda, I. Erlich, Testing MVMO on learning-based real-parameter single objective benchmark optimization problems. in 2015 IEEE Congress on Evolutionary Computation (CEC), (2015), pp. 1025–1032. https://doi.org/10.1109/CEC.2015.7257002

  43. K.M. Sallam, R.A. Sarker, D.L. Essam, S.M. Elsayed, Neurodynamic differential evolution algorithm and solving CEC2015 competition problems. in 2015 IEEE Congress on Evolutionary Computation (CEC), (2015), pp. 1033–1040. https://doi.org/10.1109/CEC.2015.7257003

  44. D.P. Searson, GPTIPS 2: An open-source software platform for symbolic data mining, (2015), pp. 551–573. https://doi.org/10.1007/978-3-319-20883-1_22

  45. M. Silva, A. Koshiyama, M. Vellasco, E. Cataldo, Evolutionary features and parameter optimization of spiking neural networks for unsupervised learning. in 2014 International Joint Conference on Neural Networks (IJCNN), (2014), pp. 2391–2398. https://doi.org/10.1109/IJCNN.2014.6889566

  46. R. Storn, K. Price, Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces, Tech. rep, International Computer Science Institute, Berkeley (1995)

  47. R.K. Ursem, Multinational evolutionary algorithms. in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), (1999), vol. 3, p. 1640. https://doi.org/10.1109/CEC.1999.785470

  48. J.A. Walker, J.F. Miller, Solving real-valued optimisation problems using cartesian genetic programming. in Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, (ACM, New York, NY, USA 2007), pp. 1724–1730. https://doi.org/10.1145/1276958.1277295

  49. D.G. Wilson, J.F. Miller, S. Cussat-Blanc, H. Luga, Positional cartesian genetic programming. CoRR (2018). arxiv:abs/1810.04119

  50. K. Yeboah-Antwi, B. Baudry, Online genetic improvement on the java virtual machine with ecselr. Genet. Program. Evolvable Mach. 18(1), 83–109 (2017). https://doi.org/10.1007/s10710-016-92784

    Article  Google Scholar 

  51. S. Yoshida, T. Harada, R. Thawonmas, Multimodal genetic programming by using tree structure similarity clustering. in 2017 IEEE 10th International Workshop on Computational Intelligence and Applications (IWCIA), (2017), pp. 85–90. https://doi.org/10.1109/IWCIA.2017.8203566

Download references

Acknowledgements

This work was supported by the Brazilian fundations CNPq and by the Rio de Janeiro state agency FAPERJ (Grant Numbers E-26/203.198/2016 and E-26/010.002420/2016). This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. We also acknowledge the support of Núcleo Avançado de Computação de Alto Desempenho (NACAD/COPPE/UFRJ), and Sistema Nacional de Processamento de Alto Desempenho (SINAPAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério C. B. L. Póvoa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Póvoa, R.C.B.L., Koshiyama, A.S., Dias, D.M. et al. Unimodal optimization using a genetic-programming-based method with periodic boundary conditions. Genet Program Evolvable Mach 21, 503–523 (2020). https://doi.org/10.1007/s10710-019-09373-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-019-09373-1

Keywords

Navigation