Skip to main content
  • Original Article
  • Published:

Wildfire changes the spatial pattern of soil nutrient availability in Pinus canariensis forests

Un incendie modifie la configuration spatiale de la disponibilité des éléments nutritifs dans les sols de forêts de Pinus canariensis

Abstract

  • • Soil resources are heterogeneously distributed in terrestrial plant communities. This heterogeneity is important because it determines the availability of local soil resources. A forest fire may change the spatial distribution of soil nutrients, affecting nutrition and survival of colonizing plants. However, specific information on the effects of ecosystem disturbance on the spatial distribution of soil resources is scarce.

  • • We hypothesized that, on a short-term basis, wildfire would change the spatial patterns of soil N and P availability. To test this hypothesis, we selected two Pinus canariensis forests burned in 2005 and 2000, respectively, and a third forest that was unburned since at least 1990 (unburned). We incubated ionic exchange membranes (IEMs) in replicated plots to estimate soil N and P availability and characterized the spatial pattern using SADIE (Spatial Analysis by Distance Indices).

  • • Mineral N, NO3-N and PO4-P availability, and aggregation and cluster indices for all nutrients were higher in the 2005 wildfire plots than in the 2000 wildfire and unburned plots.

  • • Our results suggest that surviving plants or new individuals becoming established in a burned area would find higher soil resources, but also higher small-scale heterogeneity in nutrients, which may have a major impact on the performance of individual plants and on the forest structure and dynamics.

Résumé

  • • Les ressources du sol sont distribuées de manière hétérogène dans les communautés végétales terrestres. Cette hétérogénéité est importante car elle détermine la disponibilité locale des ressources du sol. Un feu de forêt peut changer la répartition spatiale des éléments nutritifs du sol, affectant la nutrition et la survie des plantes colonisatrices. Cependant, des informations précises sur les effets des perturbations des écosystèmes sur la répartition spatiale des ressources du sol sont rares.

  • • Nous avons émis l’hypothèse qu’à court terme, un feu de forêt pourrait modifier les modèles de répartition spatiale de disponibilité de N et P dans le sol. Pour tester cette hypothèse, nous avons sélectionné deux forêts de Pinus canariensis qui ont brûlé respectivement en 2005 et 2000, et une troisième forêt qui n’a brûlé depuis au moins 1990 (non brûlée). Nous avons incubé des membranes échangeuses d’ions (IEMs) dans plusieurs parcelles pour estimer la disponibilité du sol en N et P et nous avons caractérisé le modèle spatial en utilisant SADIE (Analyse spatiale en fonction d’indices de distance).

  • • N-minéral, N-NO3, disponibilité en PO4-P, agrégation et indices de cluster ont été plus élevés dans les parcelles incendiées en 2005 que dans celles incendiées en 2000 et les parcelles non brûlées.

  • • Nos résultats suggèrent que les plants survivants ou les plants en cours d’installation dans une zone brûlée, auront accès à des ressources plus abondantes, mais seront également confrontés à une hétérogénéité plus importante dans la disponibilité en éléments nutritifs. Cette dernière peut avoir un impact majeur sur la performance individuelle des plants et sur la structure et la dynamique forestières.

References

  • Alauzis M.V., Mazzarino M.J., Raffaele E., and Roselli L., 2004. Wildfires in NW Patagonia: long-term effects on a Nothofagus forest soil. For. Ecol. Manage. 192: 131–142.

    Article  Google Scholar 

  • Allen S.E., Grimshaw H.M. and Rowland A.P., 1986. Chemical analysis. In: Moore P.D. and Chapman S.B. (Eds.), Methods in plant ecology, Blackwell Scientific Publications, Oxford, pp. 285–344.

    Google Scholar 

  • Antonovics J., Clay K., and Schmitt J., 1987. The measurement of small-scale environmental heterogeneity using clonal transplants of Anthoxanthum odoratum and Danthonia spicata. Oecologia 71: 601–607.

    Article  Google Scholar 

  • Augustine D.J. and Frank D.A., 2001. Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology 82: 3149–3162.

    Article  Google Scholar 

  • Barrett J.E., Virginia R.A., and Wall D.H., 2002. Trends in resin and KCL-extractable soil nitrogen across landscape gradients in Taylor Valley, Antarctica. Ecosystems 5: 289–299.

    Article  CAS  Google Scholar 

  • Brahim M.B., Loustau D., Gaudillère J.P., and Saur E., 1996. Effects of phosphate deficiency on photosynthesis and accumulation of starch and soluble sugars in 1-year-old seedlings of maritime pine (Pinus pinaster Ait.). Ann. Sci. For. 53: 801–810.

    Article  Google Scholar 

  • Cain M.L., Subler S., Evans J.P., and Fortin M.J., 1999. Sampling spatial and temporal variation in soil nitrogen availability. Oecologia 118: 397–404.

    Article  Google Scholar 

  • Carreira J.A., Niell F.X., and Lajtha K., 1994. Soil nitrogen availability and nitrification in Mediterranean shrublands of varying fire history and successional stage. Biogeochemistry 26: 189–209.

    Article  Google Scholar 

  • Certini G., 2005. Effects of fire on properties of forest soils: a review. Oecologia 143: 1–10.

    Article  PubMed  Google Scholar 

  • Christensen N.L., 1973. Fire and the nitrogen cycle in California chaparral. Science 181: 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Climent J., Tapias R., Pardos J.A., and Gil L., 2004. Fire adaptations in the Canary Islands pine (Pinus canariensis). Plant Ecol. 171: 185–196.

    Article  Google Scholar 

  • D’Angelo E., Crutchfield J., and Vandiviere M., 2001. Rapid, sensitive, microscale determination of phosphate in water and soil. J. Environ. Qual. 30: 2206–2209.

    Article  PubMed  Google Scholar 

  • De las Heras J., Bonilla M., and Martínez L.W., 2005. Early vegetation dynamics of Pinus tropicalis Morelet forests after experimental fire (W Cuba). Ann. For. Sci. 62: 771–777.

    Article  Google Scholar 

  • DeLuca T.H. and Sala A., 2006. Frequent fire alters nitrogen transformations in ponderosa pine stands of the Inland Northwest. Ecology 87: 2511–2522.

    Article  PubMed  Google Scholar 

  • FAO, 1996. Digital soil map of the world and derived soil properties. Derived from the FAO / UNESCO soil map of the world. FAO, Rome.

    Google Scholar 

  • Fraterrigo J.M., Turner M.G., Pearson S.M., and Dixon P., 2005. Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecol. Monogr. 75: 215–230.

    Article  Google Scholar 

  • Gallardo A., 2003. Spatial variability of soil properties in a floodplain forest in northwest Spain. Ecosystems 6: 564–576.

    Article  CAS  Google Scholar 

  • Gallardo A., Parama R., and Covelo F., 2006. Differences between soil ammonium and nitrate spatial pattern in six plant communities. Simulated effect on plant populations. Plant Soil 279: 333–346.

    Article  CAS  Google Scholar 

  • González J.R., Palahí M., Trasobares A., and Pukkala T., 2006. A fire probability model for forest stands in Catalonia (north-east Spain). Ann. For. Sci. 63: 169–176.

    Article  Google Scholar 

  • Grogan P., Bruns T.D., and Chapin III F.S., 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecología 122: 537–544.

    Article  Google Scholar 

  • Gross K.L., Pregitzer K.S., and Burton A.J., 1995. Spatial variation in nitrogen availability in three successional plant communities. J. Ecol. 83: 357–367.

    Article  Google Scholar 

  • Guo D., Mou P., Jones R.H., and Mitchel R.J., 2002. Temporal changes in spatial patterns of soil moisture following disturbance: an experimental approach. J. Ecol. 90: 338–347.

    Article  Google Scholar 

  • Hirobe M., Tokuchi N., Wachrinrat C., and Taeda H., 2003. Fire history influences on the spatial heterogeneity of soil nitrogen transformations in three adjacent stands in a dry tropical forest in Thailand. Plant Soil 249: 309–318.

    Article  CAS  Google Scholar 

  • Hollander M. and Wolfe D.A., 1999. Nonparametric Statistical Methods, 2nd ed., John Wiley & Sons, New York, 817 p.

    Google Scholar 

  • Huang W.Z. and Schoenau J.J., 1997. Seasonal and spatial variations in soil nitrogen and phosphorus supply rates in a boreal aspen forest. Can. J. Soil Sci. 77: 597–612.

    Article  Google Scholar 

  • Hutchings M.J., John E.A., and Wijesinghea D.K., 2003. Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology 84: 2322–2334.

    Article  Google Scholar 

  • Jackson R.B. and Caldwell M.M., 1993. Geostatistical patterns of soil heterogeneity around individual perennial plants. J. Ecol. 81: 683–692.

    Article  Google Scholar 

  • Maestre F.T. and Quero J.L., 2008. Análisis espacial mediante índices de distancia (SADIE). In: Maestre F.T., Escudero A., and Bonet A. (Eds.), Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones, AEET-CAM.

  • Miller R.E., ver Hoef J.M., and Fowler N.L., 1995. Spatial heterogeneity in eight central Texas grasslands. J. Ecol. 83: 919–928.

    Article  Google Scholar 

  • Nicotra A.B., Chazdon R.L., and Iriarte S.V.B., 1999. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80: 1908–1926.

    Article  Google Scholar 

  • Perry J.N., 1998. Measures of spatial pattern for counts. Ecology 79: 1008–1017.

    Article  Google Scholar 

  • Perry J.N. and Dixon P., 2002. A new method to measure spatial association for ecological count data. Ecoscience 9: 133–141.

    Google Scholar 

  • Perry J.N., Winder L., Holland J.M., and Alston R.D., 1999. Red-blue plots for detecting clusters in count data. Ecol. Lett. 2: 106–113.

    Article  Google Scholar 

  • Quian P. and Schoenau J.J., 2002. Practical applications of ion exchange resins in agricultural and environmental soil research. Can. J. Soil Sci. 82: 9–21.

    Article  Google Scholar 

  • Quintana J.R., Moreno A.M., and Parra J.G., 2007. Effect of heating on mineral components of the soil organic horizon from a Spanish juniper (Juniperus thurifera L.) woodland. J. Arid Environ. 71: 45–56.

    Article  Google Scholar 

  • R Development Core Team, 2007. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Raison R.J., 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51: 73–108.

    Article  CAS  Google Scholar 

  • Robertson G.P. and Gross C.L., 1994. Assessing the heterogeneity of belowground resources: quantifying pattern and scale. In: Caldwell M.M. and Pearcy R.W. (Eds.), Plant exploitation of environmental heterogeneity, academic press, New York, pp. 237–253.

    Google Scholar 

  • Robertson G.P., Klingesnsmith K.M., Klug M.J., Paul E.A., Crum J.R., and Ellis B.G., 1997. Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecol. Appl. 7: 158–170.

    Article  Google Scholar 

  • Romanya J., Casals P., and Vallejo V.R., 2001. Short-term effects of fire on soil nitrogen availability in mediterranean grasslands and shrublands growing in old fields. For. Ecol. Manage. 147: 39–53.

    Article  Google Scholar 

  • Ryel R.J., Caldwell M.M., and Manwaring J.H., 1996. Temporal dynamics of soil spatial heterogeneity in sagebrush-wheatgrass steppe during a growing season. Plant Soil 184: 299–309.

    Article  CAS  Google Scholar 

  • Schlesinger W.H., 1997. Biogeochemistry: an analysis of global change, Academic Press, Orlando, 614 p.

    Google Scholar 

  • Schlesinger W.H., Raikes J.A., Hartley A.E., and Cross A.F., 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77: 364–374.

    Article  Google Scholar 

  • Sims G.K., Ellsworth T.R., and Mulvaney R.L., 1995. Microscale determination of inorganic nitrogen in water and soil extracts. Commun. Soil Sci. Plant. 26: 303–316.

    Article  CAS  Google Scholar 

  • Smeck N.E., 1985. Phosphorus dynamics in soils and landscape. Geoderma 36: 185–199.

    Article  CAS  Google Scholar 

  • Subler S., Blair J.M., and Edwards C.A., 1995. Using anion-exchange membranes to measure soil nitrate availability and net nitrification. Soil Biol. Biochem. 27: 911–917.

    Article  CAS  Google Scholar 

  • Turner M.G., Smithwick E.A., Metzger K.L., Tinker D.B., and Romme W.H., 2007. Inorganic nitrogen availability after severe standreplacing fire in the Greater Yellowstone ecosystem. Proc. Natl. Acad. Sci. USA 104: 4782–4789.

    Article  PubMed  CAS  Google Scholar 

  • Vitousek P.M. and Howarth R.W., 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87–115.

    Article  Google Scholar 

  • Wienhold B.J. and Klemmedson J.O., 1992. Effect of prescribed fire on nitrogen and phosphorus in Arizona chaparral soil-plant systems. Arid Soil Research and Rehabilitation 6: 285–296.

    CAS  Google Scholar 

  • Yermakov Z. and Rothstein R., 2006. Changes in soil carbon and nitrogen cycling along a 72-year wildfire chronosequence in Michigan jack pine forests. Oecologia 149: 690–700.

    Article  PubMed  Google Scholar 

  • Ziadi N., Simard R.R., Allard A., and Lafond J., 1999. Field evolution of anion exchange membranes as a N soil testing method for grasslands. Can. J. Soil Sci. 79: 281–294.

    Article  Google Scholar 

  • Ziadi N., Simard R.R., Allard A., and Parent G., 2000. Yield response of grass forage to N fertilizer as related to spring soil nitrate sorbed on anionic exchange membranes (AEMs). Can. J. Soil Sci. 80: 203–212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, A., Durán, J., Fernández-Palacios, J.M. et al. Wildfire changes the spatial pattern of soil nutrient availability in Pinus canariensis forests. Ann. For. Sci. 66, 210 (2009). https://doi.org/10.1051/forest/2008092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2008092

Keywords

Mots-clés