Skip to main content
Log in

Gold nanoparticle trophic transfer from natural biofilm to grazer fish

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

Nanoparticle (NP) trophic transfer is reported as an important exposure route for organisms in aquatic ecosystems. This study focused on gold nanoparticle (AuNP, PEG-coated, 10 nm diameter) transfer using an experimental benthic food chain which included two trophic levels: natural river biofilm and grazer fish Hypostomus plecostomus. AuNP biofilm accumulation was assessed via water AuNP concentrations and total biofilm mass. An extended range of six AuNP concentrations in water (0, 0.0048, 0.048, 0.48, 4.8, and 48 mg Au L−1) was set. A dose-dependent relation between gold concentrations in water and natural river biofilm was observed after a 48-h exposure. This pointed out the high propensity of natural biofilms to accumulate gold. Additionally, total biofilm mass appeared to influence AuNP accumulation at the highest exposure levels. This first step enables the set-up of the transfer experiment in which grazer fish were exposed for 21 days to natural biofilms, previously contaminated by low AuNP concentrations in water (NP0.1: 0.48 and NP1: 4.8 mg Au L−1). Gold was quantified in eight fish organs, and histology was observed. Gold was transferred from biofilms to fish; bioaccumulation was organ- and exposure level-dependent. Interestingly, the brain showed significant gold accumulation at the highest exposure level (NP1). Histological observations indicated distinct inflammatory responses in fish liver, spleen, and muscle. The overall results suggest the potential hazards of subchronic nanoparticle exposure in aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alivisatos AP (1996) Semiconductor clusters, Nanocrytals, and quantum dots. Science (80-. ) 271:933–937

    Article  CAS  Google Scholar 

  2. Tervonen T, Linkov I, Figueira JR, Steevens J, Chappell M, Merad M (2009) Risk-based classification system of nanomaterials. J Nanopart Res 11:757–766

    Article  CAS  Google Scholar 

  3. Keren K, Berman RS, Buchstab E, Sivan U, Braun E. 2003. DNA-templated carbon nanotube field-effect transistor. Science (80-. ). 302:1380 LP-1382

    Article  CAS  Google Scholar 

  4. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 98:2035–2044

    Google Scholar 

  5. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    Article  CAS  Google Scholar 

  6. Baalousha M, Yang Y, Vance ME, Colman BP, McNeal S, Xu J, Blaszczak J, Steele M, Bernhardt E, Hochella MF (2016) Outdoor urban nanomaterials: the emergence of a new, integrated, and critical field of study. Sci Total Environ 557–558:740–753

    Article  Google Scholar 

  7. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  8. Caballero-Guzman A, Nowack B (2016) A critical review of engineered nanomaterial release data: are current data useful for material flow modeling? Environ Pollut 213:502–517

    Article  CAS  Google Scholar 

  9. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905

    Article  CAS  Google Scholar 

  10. Künniger T, Gerecke AC, Ulrich A, Huch A, Vonbank R, Heeb M, Wichser A, Haag R, Kunz P, Faller M (2014) Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environ Pollut 184:464–471

    Article  Google Scholar 

  11. Baptista MS, Miller RJ, Halewood ER, Hanna SK, Almeida CMR, Vasconcelos VM, Keller AA, Lenihan HS (2015) Impacts of silver nanoparticles on a natural estuarine plankton community. Environ. Sci. Technol. 49:12968–12974

    Article  CAS  Google Scholar 

  12. Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL, Fulton MH, Scott IG, Decho AW, Kashiwada S, Murphy CJ, Shaw TJ (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4:441–444

    Article  CAS  Google Scholar 

  13. Holbrook RD, Murphy KE, Morrow JB, Cole KD (2008) Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol 3:352–355

    Article  CAS  Google Scholar 

  14. Cedervall T, Hansson LA, Lard M, Frohm B, Linse S (2012) Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One 7:1–6

    Article  Google Scholar 

  15. Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18:939–951

    Article  CAS  Google Scholar 

  16. Abdelhalim MAK, Mady M M (2012) Physical properties of different gold nanoparticles: ultraviolet-visible and fluorescence measurements. J Nanomed Nanotechnol 3:1–5

    Google Scholar 

  17. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  Google Scholar 

  18. Hashmi AS, Hutchings JG (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  19. Hashmi AS (2007) Gold-catalyzed organic reactions. Chem Rev 107:3180–3211

    Article  CAS  Google Scholar 

  20. Carretin S, Carmen Blanco M, Corma A, Hashmi AS (2006) Heterogenous gold-catalysed synthesis of phenols. Adv Synth Catal 348:1283–1288

    Article  Google Scholar 

  21. Hashmi AS, Carmen Blanco M, Fischer D, Bats JW (2006) Gold catalysis: evidence for the in-situ reduction of gold(III) during the cyclization of allenyl carbinols. Eur J Org Chem 2006:1387–1389

    Article  Google Scholar 

  22. Akiyama Y, Mori T, Katayama Y, Niidome T (2009) The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J Control Release 139:81–84

    Article  CAS  Google Scholar 

  23. Antosh MP, Wijesinghe DD, Shrestha S, Lanou R, Huang YH, Hasselbacher T, Fox D, Neretti N, Sun S, Katenka N, Cooper LN, Andreev OA, Reshetnyak YK (2015) Enhancement of radiation effect on cancer cells by gold-pHLIP. Proc Natl Acad Sci U S A 112:5372–5376

    Article  CAS  Google Scholar 

  24. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  25. Cheng Y, Dai Q, Morshed RA, Fan X, Wegscheid ML, Wainwright DA, Han Y, Zhang L, Auffinger B, Tobias AL, Rincon E, Thaci B, Ahmed AU, Warnke PC, He C, Lesniak MS (2014) Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small 10:5137–5150

    CAS  Google Scholar 

  26. Bogdanov AA, Gupta S, Koshkina N, Corr SJ, Zhang S, Curley SA, Han G (2015) Gold nanoparticles stabilized with MPEG-grafted poly(l-lysine): in vitro and in vivo evaluation of a potential theranostic agent. Bioconjug Chem 26:39–50

    Article  CAS  Google Scholar 

  27. Geitner NK, Marinakos SM, Guo C, O’Brien N, Wiesner MR (2016) Nanoparticle surface affinity as a predictor of trophic transfer. Environ Sci Technol 50:6663–6669

    Article  CAS  Google Scholar 

  28. Larguinho M, Correia D, Diniz MS, Baptista PV (2014) Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels. J Nanopart Res 16:1–11

    Article  CAS  Google Scholar 

  29. Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126

    Article  CAS  Google Scholar 

  30. Baudrimont M, Andrei J, Mornet S, Gonzalez P, Mesmer-Dudons N, Gourves P-Y, Jaffal A, Dedourge-Geffard O, Geffard A, Geffard O, Garric J, Feurtet-Mazel A (2017) Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm. Environ Sci Pollut Res 25:11181–11191. https://doi.org/10.1007/s11356-017-8400-3

    Article  CAS  Google Scholar 

  31. Duong TT, Morin S, Coste M, Herlory O, Feurtet-Mazel A, Boudou A (2010) Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity. Sci Total Environ 408:552–562

    Article  CAS  Google Scholar 

  32. Dauta A (1982) Conditions de développement du phytoplancton. Etude comparative du comportement de huit espèces en culture. II. Rôle des nutriments: assimilation et stockage intracellulaire. Annls Limnol 18:263–292

    Article  CAS  Google Scholar 

  33. Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7:26–31

    Article  Google Scholar 

  34. Flemming H, Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8:623–33.

    Article  CAS  Google Scholar 

  35. Li X, Yeh Y-C, Giri K, Mout R, Landis RF, Prakash YS, Rotello VM (2015) Control of nanoparticle penetration into biofilms through surface design. Chem Commun 51:282–285

    Article  CAS  Google Scholar 

  36. Xu H, Pan J, Zhang H, Yang L (2016) Interactions of metal oxide nanoparticles with extracellular polymeric substances (EPS) of algal aggregates in an eutrophic ecosystem. Ecol Eng 94:464–470

    Article  Google Scholar 

  37. Yeo MK, Nam DH (2013) Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: a comparison of TiO2 nanoparticles and nanotubes. Environ Pollut 178:166–172

    Article  CAS  Google Scholar 

  38. Gonzalez AG, Mombo S, Leflaive J, Lamy A, Pokrovsky OS, Rols JL (2015) Silver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silver. Environ Sci Pollut Res 22:8412–8424

    Article  CAS  Google Scholar 

  39. Xu Y, Wang C, Hou J, Dai S, Wang P, Miao L, Lv B, Yang Y, You G (2016) Effects of ZnO nanoparticles and Zn2+ on fluvial biofilms and the related toxicity mechanisms. Sci Total Environ 544:230–237

    Article  CAS  Google Scholar 

  40. Wang Z, Yin L, Zhao J, Xing B (2016) Trophic transfer and accumulation of TiO2 nanoparticles from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) along a marine benthic food chain. Water Res 95:250–259

    Article  CAS  Google Scholar 

  41. Pakrashi S, Dalai S, Chandrasekaran N, Mukherjee A (2014) Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia). Aquat Toxicol 152:74–81

    Article  CAS  Google Scholar 

  42. Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71

    Article  CAS  Google Scholar 

  43. Feswick A, Griffitt RJ, Siebein K, Barber DS (2013) Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization. Aquat Toxicol 130:210–218

    Article  Google Scholar 

  44. Cho WS, Cho M, Jeong J, Choi M, Han BS, Shin HS, Hong J, Chung BH, Jeong J, Cho MH (2010) Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 245:116–123

    Article  CAS  Google Scholar 

  45. Rothen-Rutishauser BM, Schürch S, Haenni B, Kapp N, Gehr P (2006) Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ. Sci. Technol. 40:4353–4359

    Article  CAS  Google Scholar 

  46. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919

    Article  Google Scholar 

  47. Wojnicki M, Luty-błocho M, Bednarski M, Dudek M, Knutelska J, Sapa J, Zygmunt M, Nowak G, Fitzner K (2013) Tissue distribution of gold nanoparticles after single intravenous administration in mice. Pharmacol Reports 65:1033–1038

    Article  CAS  Google Scholar 

  48. Hong J, Hong F, Ze Y, Zhang YQ (2016) The nano-TiO2 exposure can induce hepatic inflammation involving in a JAK–STAT signalling pathway. J Nanopart Res 18:1–9

    Article  Google Scholar 

  49. Del Monte U (2005) Swelling of hepatocytes injured by oxidative stress suggests pathological changes related to macromolecular crowding. Med Hypotheses 64:818–825

    Article  Google Scholar 

  50. Henics T, Wheatley DN (1999) Cytoplasmic vacuolation, adaptation and cell death: a view on new perspectives and features. Biol Cell 91:485–498

    Article  CAS  Google Scholar 

  51. Herraez MP, Zapata AG (1986) Structure and function of the melano-macrophage centres of the goldfish Carassius auratus. Vet Immunol Immunopathol 12:117–126

    Article  CAS  Google Scholar 

  52. Agius C, Roberts RJ (2003) Melano-macrophage centres and their role in fish pathology. J Fish Dis 26:499–509

    Article  CAS  Google Scholar 

  53. Leite PEC, Pereira MR, Santos CA do N, Campos APC, Esteves TM, Granjeiro JM (2015) Gold nanoparticles do not induce myotube cytotoxicity but increase the susceptibility to cell death. Toxicol Vitr 29:819–827

    Article  CAS  Google Scholar 

  54. Stone V, Donaldson K (2006) Nanotoxicology: signs of stress. Nat Nanotechnol 1:23–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Florence Daniel for her daily help and her technical cooperation with the caging devices; Henri Bouillard and Christian Portier for manufacturing the « Rotagit ». Electron microscopy studies were conducted at the Bordeaux Imaging Center, a core facility of the national infrastructure “France BioImaging” (ANR-10-INBS-04-FranceBioImaging).

Funding

This work was supported by the Agence Nationale de la Recherche (ANR) in the CITTOXIC-Nano program (ANR-14-CE21-0001-01) and the Investments for the Future Program, within the Cluster of Excellence COTE (ANR-10-LABX-45). Fanny Perrier was supported by a grant from the French Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magalie Baudrimont.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrier, F., Baudrimont, M., Mornet, S. et al. Gold nanoparticle trophic transfer from natural biofilm to grazer fish. Gold Bull 51, 163–173 (2018). https://doi.org/10.1007/s13404-018-0241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-018-0241-4

Keywords

Navigation