Skip to main content

Advertisement

Log in

Fermentative Production of Ethanol Using Pinus patula as Raw Material: Economic and Energy Assessment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The production of cellulosic ethanol has been gaining attention in the industry sector because of the high availability of lignocellulosic biomass from agricultural and forestry activities. Pinus patula is one of the most typical softwood species in Colombia. The aim of this work is to evaluate the production of ethanol using Pinus patula as raw material using dilute acid pretreatment and enzymatic hydrolysis to produce sugars able to be used as substrate for the strain Saccharomyces cerevisiae. Three fermentation configurations were selected to evaluate the performance of the microorganism: configurations 1 and 2 used glucose in a percentage of 80%w/v and 70%w/v, respectively, as substrate to establish the adaptation requirements of the microorganism. The configuration 3 considered the use of concentrated P. patula hydrolysate. An experimental yield of 0.364 ± 0.009 g ethanol/g sugar (73% of the theoretical) was obtained. Additionally, the economic and energetic comparison between the biochemical (ethanol production through fermentation) and thermochemical (synthesis gas through gasification) pathways to produce bioenergy was performed through simulation approaches. As main results, a higher ethanol production cost (1.53 USD/L) was obtained in comparison to the market price (0.77 USD/L) and a low energy efficiency (20%). Different alternatives such as waste integration and energy incentives must be considered in order to produce ethanol in a feasible way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Repoduced with permission from Referemce [31]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ford, C.M., Jones, N.B., Chirwa, P.W.: Pinus patula and pine hybrid hedge productivity in South Africa: a comparison between two vegetative propagation systems exposed to natural infection by Fusarium circinatum. J. For. Sci. 2620, 1–9 (2014). https://doi.org/10.2989/20702620.2014.916501

    Article  Google Scholar 

  2. Moncada, J., Cardona, C.A., Higuita, J.C., Vélez, J.J., López-Suarez, F.E.: Wood residue (Pinus patula bark) as an alternative feedstock for producing ethanol and furfural in Colombia: experimental, techno-economic and environmental assessments. Chem. Eng. Sci. 140, 309–318 (2016). https://doi.org/10.1016/j.ces.2015.10.027

    Article  Google Scholar 

  3. García, C.A., Betancourt, R., Cardona, C.A.: Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus patula. J. Environ. Manage. (2015). https://doi.org/10.1016/j.jenvman.2016.04.001

    Article  Google Scholar 

  4. Damartzis, T., Zabaniotou, A.: Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review. Renew. Sustain. Energy Rev. 15, 366–378 (2011). https://doi.org/10.1016/J.RSER.2010.08.003

    Article  Google Scholar 

  5. Johnson, E.: Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod. Biorefin. 10, 164–174 (2016). https://doi.org/10.1002/bbb

    Article  Google Scholar 

  6. Soudham, V.P., Raut, D.G., Anugwom, I., Brandberg, T., Larsson, C., Mikkola, J.P.: Coupled enzymatic hydrolysis and ethanol fermentation: ionic liquid pretreatment for enhanced yields. Biotechnol. Biofuels. 8, 135 (2015). https://doi.org/10.1186/s13068-015-0310-3

    Article  Google Scholar 

  7. Daza Serna, L.V., Orrego Alzate, C.E., Cardona Alzate, C.A.: Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 199, 113–120 (2016)

    Article  Google Scholar 

  8. Galbe, M., Zacchi, G.: A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59, 618–628 (2002). https://doi.org/10.1007/s00253-002-1058-9

    Article  Google Scholar 

  9. Hoyer, K., Galbe, M., Zacchi, G.: Production of fuel ethanol from softwood by simultaneous saccharification and fermentation at high dry matter content. J. Chem. Technol. Biotechnol. 84, 570–577 (2009). https://doi.org/10.1002/jctb.2082

    Article  Google Scholar 

  10. St1 Biofuels Oy: Cellunolix® ethanol plant to be built in Finland. https://www.st1.eu/cellunolix-ethanolplant-to-be-built-in-finland

  11. Söderström, J., Pilcher, L., Galbe, M., Zacchi, G.: Two-step pretreatment of softwood with SO2 two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Appl. Biochem. Biotechnol. 98–100, 5–21 (2002)

    Google Scholar 

  12. St1 Biofuels Oy: St1´s and SOK´s joint venture NEB plans 50-million-litre Cellunolix® bioethanol plant in Pietarsaari. https://www.st1.eu/st1s-and-soks-joint-venture-neb-plans-50-million-litre-cellunolix-bioethanolpla

  13. Aho, A., Kumar, N., Eränen, K., Holmbom, B., Hupa, M., Salmi, T., Murzin, D.Y.: Pyrolysis of softwood carbohydrates in a fluidized bed reactor. Int. J. Mol. Sci. 9(9), 1665–1675 (2008)

    Article  Google Scholar 

  14. Garcìa-Pérez, M., Chaala, A., Pakdel, H., Kretschmer, D., Roy, C.: Vacuum pyrolysis of softwood and hardwood biomass: comparison between product yields and bio-oil properties. J. Anal. Appl. Pyrolysis. 78, 104–116 (2007). https://doi.org/10.1016/J.JAAP.2006.05.003

    Article  Google Scholar 

  15. Oasmaa, A., Solantausta, Y., Arpiainen, V., Kuoppala, E., Sipilä, K.: Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuels. 24, 1380–1388 (2010). https://doi.org/10.1021/ef901107f

    Article  Google Scholar 

  16. Amaral, S., De Carvalho Junior, A., Costa, M.A.M., Neto, T.G.S., Dellani, R., Leite, L.H.S.: Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions. Bioresour. Technol. 164, 55–63 (2014). https://doi.org/10.1016/j.biortech.2014.04.060

    Article  Google Scholar 

  17. Roy, M.M., Corscadden, K.W.: An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Appl. Energy. 99, 206–212 (2012). https://doi.org/10.1016/J.APENERGY.2012.05.003

    Article  Google Scholar 

  18. García, C.A., Morales, M., Quintero, J., Aroca, G., Cardona, C.A.: Environmental assessment of hydrogen production based on Pinus patula plantations in Colombia. Energy. 139, 606–616 (2017). https://doi.org/10.1016/j.energy.2017.08.012

    Article  Google Scholar 

  19. Waldner, M.H., Vogel, F.: Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind. Eng. Chem. Res. 44, 4543–4551 (2005). https://doi.org/10.1021/ie050161h

    Article  Google Scholar 

  20. Mandl, C., Obernberger, I., Scharler, I.R.: Characterisation of fuel bound nitrogen in the gasification process and the staged combustion of producer gas from the updraft gasification of softwood pellets. Biomass Bioenergy 35, 4595–4604 (2011). https://doi.org/10.1016/J.BIOMBIOE.2011.09.001

    Article  Google Scholar 

  21. Moncada, J., Tamayo, J., Cardona, C.A.: Evolution from biofuels to integrated biorefineries: techno-economic and environmental assessment of oil palm in Colombia. J. Clean. Prod. 81, 51–59 (2014)

    Article  Google Scholar 

  22. Chum, H., Faaij, A., Moreira, J.: Bioenergy. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y. (eds.) Renewable Energy Sources and Climate Change Mitigation. pp. 46–55. Intergovernmental Panel on Climate Change (IPCC), Geneva (2011)

    Google Scholar 

  23. García-Velásquez, C.A.: Hydrogen production through gasification and dark fermentation. (2016). http://www.bdigital.unal.edu.co/54321/

  24. Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., Goud, V.V.: Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenergy 81, 9–18 (2015). https://doi.org/10.1016/j.biombioe.2015.05.006

    Article  Google Scholar 

  25. Karimi, K., Taherzadeh, M.J.: A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour. Technol. 200, 1008–1018 (2016). https://doi.org/10.1016/j.biortech.2015.11.022

    Article  Google Scholar 

  26. Selig, M., Weiss, N., Ji, Y.: Enzymatic Saccharification of Lignocellulosic Biomass, pp. 1–5. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  27. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  28. Jensen, J., Morinelly, J., Aglan, A., Mix, A., Shonnard, D.: Kinetic characterization of biomass dilute sulfuric acid hydrolysis: mixtures of hardwoods, softwood, and switchgrass. Environ. Energy Eng. 54, 1637–1645 (2008). https://doi.org/10.1002/aic

    Article  Google Scholar 

  29. Esteghlalian, A., Hashimoto, A.G., Fenske, J.J., Penner, M.H.: Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour. Technol. 59, 129–136 (1997). https://doi.org/10.1016/S0960-8524(97)81606-9

    Article  Google Scholar 

  30. Wooley, R.J., Putsche, V.: Development of an ASPEN PLUS physical property database for biofuels components, pp.1–38. National Renewable Energy Laboratory, Golden (1996)

    Book  Google Scholar 

  31. García, C.A., Peña, Á, Betancourt, R., Cardona, C.A.: Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: coffee cut-stems case. J. Environ. Manage. (2017). https://doi.org/10.1016/j.jenvman.2017.04.029

    Article  Google Scholar 

  32. Quintero, J.a., Moncada, J., Cardona, C.a.: Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Bioresour. Technol. 139, 300–307 (2013). https://doi.org/10.1016/j.biortech.2013.04.048

    Article  Google Scholar 

  33. Moncada, J., Tamayo, J.A., Cardona, C.A.: Integrating first, second, and third generation biorefineries: incorporating microalgae into the sugarcane biorefinery. Chem. Eng. Sci. 118, 126–140 (2014). https://doi.org/10.1016/j.ces.2014.07.035

    Article  Google Scholar 

  34. Rafiqul, I.S.M., Mimi Sakinah, aM.: Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chem. Eng. Sci. 71, 431–437 (2012). https://doi.org/10.1016/j.ces.2011.11.007

    Article  Google Scholar 

  35. Khodaverdi, M., Karimi, K., Jeihanipour, A., Taherzadeh, M.J.: Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by NMMO. J. Ind. Microbiol. Biotechnol. 39, 429–438 (2012). https://doi.org/10.1007/s10295-011-1048-y

    Article  Google Scholar 

  36. Kadam, K.L., Rydholm, E.C., McMillan, J.D.: Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol. Prog. 20, 698–705 (2004). https://doi.org/10.1021/bp034316x

    Article  Google Scholar 

  37. Quintero, J.A., Cardona, C.A.: Process Simulation of Fuel Ethanol Production from Lignocellulosics using Aspen Plus. Ind. Eng. Chem. Res. 50(10), 6205–6212 (2011)

    Article  Google Scholar 

  38. Pitt, W.W., Haag, G.L., Lee, D.D.: Recovery of ethanol from fermentation broths using selective sorption-desorption. Biotechnol. Bioeng. 25, 123–131 (1983). https://doi.org/10.1002/bit.260250110

    Article  Google Scholar 

  39. García, C.A., Moncada, J., Aristizábal Marulanda, V., Cardona, C.A.: Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: coffee cut-stems. Int. J. Hydrogen Energy. 42, 5849–5864 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.038

    Article  Google Scholar 

  40. Melgar, A., Pérez, J.F., Laget, H., Horillo, A.: Thermochemical equilibrium modelling of a gasifying process. Energy Convers. Manag. 48, 59–67 (2007). https://doi.org/10.1016/j.enconman.2006.05.004

    Article  Google Scholar 

  41. Jarungthammachote, S., Dutta, A.: Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Convers. Manag. 49, 1345–1356 (2008). https://doi.org/10.1016/j.enconman.2008.01.006

    Article  Google Scholar 

  42. Peters, M.S., Timmerhaus, K.D., West, R.E.: Plant Design and Economics for Chemical Engineers. McGraw-Hill, New York (2004)

    Google Scholar 

  43. Fuels, F.: Wood chip and wood pellet price comparison. https://www.forestfuels.co.uk/wood-fuel-pricecomparison/

  44. Kemcore: Reagents Market Price. https://www.kemcore.com/sulphuric-acid-98.html

  45. Liu, G., Zhang, J., Bao, J.: Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess. Biosyst. Eng. 39, 133–140 (2016). https://doi.org/10.1007/s00449-015-1497-1

    Article  Google Scholar 

  46. Federación Nacional de Biocombustibles de Colombia—Fedebiocombustibles: Biofuel prices in Colombia 2016–2017

  47. Ulrich, G.D., Vasudevan, P.T.: How to estimate utility costs. Chem. Eng. 113, 66–69 (2006)

    Google Scholar 

  48. Boundy, B.: Biomass Energy Data Book, 4 ed, p. 254. Deparment of Energy, Washington DC, (2011)

    Book  Google Scholar 

  49. Kim, K.H.: Two-stage dilute acid-catalyzed hydrolytic conversion of softwood sawdust into sugars fermentable by ethanologenic microorganisms. J. Sci. Food Agric. 85, 2461–2467 (2005). https://doi.org/10.1002/jsfa.2268

    Article  Google Scholar 

  50. Bösch, P., Wallberg, O., Joelsson, E., Galbe, M., Zacchi, G.: Research impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production. Biotechnol. Biofuels. 3, 15 (2010). https://doi.org/10.1186/1754-6834-3-15

    Article  Google Scholar 

  51. Shinozaki, Y., Kitamoto, H.K.: Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process. J. Biosci. Bioeng. 111, 320–325 (2011). https://doi.org/10.1016/j.jbiosc.2010.11.003

    Article  Google Scholar 

  52. Dinh, T.N., Nagahisa, K., Hirasawa, T., Furusawa, C., Shimizu, H.: Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE. 3, e2623 (2008). https://doi.org/10.1371/journal.pone.0002623

    Article  Google Scholar 

  53. Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010). https://doi.org/10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  54. Qian, M., Tian, S., Li, X., Zhang, J., Pan, Y., Yang, X.: Ethanol production from dilute-acid softwood hydrolysate by co-culture. Appl. Biochem. Biotechnol. (2006). https://doi.org/10.1385/ABAB:134:3:273

    Article  Google Scholar 

  55. Nyangi Chacha: Comparison of Escherichia coli KO11 and Saccharomyces cerevisiae ATCC 96581 in fermenting Pinus patula hydrolysate pretreated at different steam explosion severity. Afr. J. Biotechnol. (2012). https://doi.org/10.5897/AJB11.3498

    Article  Google Scholar 

  56. Hawkins, G.M., Doran-Peterson, J.: A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol. Biofuels. 4, 49 (2011). https://doi.org/10.1186/1754-6834-4-49

    Article  Google Scholar 

  57. Nguyen, Q.A., Tucker, M.P., Keller, F.A., Beaty, D.A., Connors, K.M., Eddy, F.P.: Dilute acid hydrolysis of softwoods. Appl. Biochem. Biotechnol. (1999). https://doi.org/10.1385/ABAB:77:1-3:133

    Article  Google Scholar 

  58. Mesa, L., Martínez, Y., Barrio, E., González, E.: Desirability function for optimization of dilute acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations. Appl. Energy. 198, 299–311 (2017). https://doi.org/10.1016/j.apenergy.2017.03.018

    Article  Google Scholar 

  59. Parajó, J.C., Vázquez, D., Alonso, J.L., Santos, V., Dominguez, H.: Prehydrolysis of Eucalyptus wood with dilute sulphuric acid: operation at atmospheric pressure. Holz als Roh- und Werkst. 51, 357–363 (1993). https://doi.org/10.1007/BF02663809

    Article  Google Scholar 

  60. Daystar, J., Treasure, T., Gonzalez, R., Reeb, C., Venditti, R., Kelley, S.: The NREL biochemical and thermochemical ethanol conversion processes: financial and environmental analysis comparison. BioResources. 10, 5096–5116 (2015). https://doi.org/10.15376/biores.10.3.5096-5116

    Article  Google Scholar 

  61. Zhao, L., Zhang, X., Xu, J., Ou, X., Chang, S., Wu, M.: Techno-economic analysis of bioethanol production from lignocellulosic biomass in china: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Energies. 8, 4096–4117 (2015). https://doi.org/10.3390/en8054096

    Article  Google Scholar 

  62. Foust, T.D., Aden, A., Dutta, A., Phillips, S.: An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose. 16, 547–565 (2009). https://doi.org/10.1007/s10570-009-9317-x

    Article  Google Scholar 

  63. Piccolo, C., Bezzo, F.: A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenergy 33, 478–491 (2009). https://doi.org/10.1016/j.biombioe.2008.08.008

    Article  Google Scholar 

  64. Wingren, A., Söderström, J., Galbe, M., Zacchi, G.: Process considerations and economic evaluation of two-step steam pretreatment for production of fuel ethanol from softwood. Biotechnol. Prog. 20, 1421–1429 (2004). https://doi.org/10.1021/bp049931v

    Article  Google Scholar 

  65. Unidad de Planeación Energética (UPME): Informe Mensual De Variables De Generación Y Del Mercado Eléctrico Colombiano., Bogotá, Colombia (2015)

Download references

Acknowledgements

The authors express their acknowledgments to the Centro de Bioinformática y Biología Computacional (BIOS) for the financial support through the project entitled “Fortalecimiento de CTEI en biotecnologia para el departamento de Caldas apoyado por infraestructura computacional avanzada y trabajo colaborativo (CALDAS BIOREGION)” Grant No. 08112013-0621. The authors also express their gratitude to the Universidad Nacional de Colombia Sede Manizales through the Projects entitled “Development of modular small-scale integrated biorefineries to produce an optimal range of bioproducts from a variety of rural agricultural and agroindustrial residues/wastes with a minimum consumption of fossil energy—SMIBIO” from ERANET LAC 2015 Grant No. 202010011331 and the Project “Techno-economic and environmental evaluation of a biorefinery using the residues from the Coffee Crop” Grant No. 202010014230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Cardona.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Velásquez, C.A., Carmona-Garcia, E., Caballero, A.S. et al. Fermentative Production of Ethanol Using Pinus patula as Raw Material: Economic and Energy Assessment. Waste Biomass Valor 11, 1777–1788 (2020). https://doi.org/10.1007/s12649-018-0494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0494-4

Keywords

Navigation