Skip to main content
Log in

Effect of Supporting Electrolyte on the Surface Corrosion and Anodic Oxidation Performance of Graphite Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This study presents a comparative investigation of supporting electrolyte effect on the surface corrosion and anodic oxidation performance of graphite electrode. The effect of electrolyte on the electrochemical behavior is investigated in solution containing 0.05 mol L−1 sodium salt, using current-overpotential curves and Tafel lines. The surface morphology and composition of the graphite anodes before and after electrolysis are characterized by scanning electron microscopy, X-ray diffraction, and Raman spectra. In aqueous solution, graphite anode is positive polarized, functionalizes the surface, and releases soluble organics. The light-absorbing corrosion products of graphite anode are recorded by a UV-Vis spectrophotometer in the ultraviolet wavelength range. Batch experiments on atrazine oxidation show that NaCl is more efficient than Na2SO4 and NaNO3 to promote the combustion of organics due to the mediated oxidation of the electrogenerated active chlorine species. The oxidation process is confirmed to employ a non-radical mechanism in which the organics are degraded at the active sites of graphite anode.

Carbon anodes have been widely employed for organics removal during anodic oxidation process, however, oxidation of contaminants with these materials is usually accompanied by electro-corrosion. This paper presents a comparative investigation of supporting electrolyte effect on the surface corrosion and anodic oxidation performance, using graphite felt as the example, to extend our knowledge of the mechanistic behavior of carbon anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.V. Nidheesh, M. Zhou, M.A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197, 210–227 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Huebner, Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review. Water Res. 139, 118–131 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem. Eng. J. 284, 582–598 (2016)

    Article  CAS  Google Scholar 

  4. K.O. Badmus, J.O. Tijani, E. Massima, L. Petrik, Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process. Environ. Sci. Pollut. Res. 25(8), 7299–7314 (2018)

    Article  CAS  Google Scholar 

  5. C.K. Remucal, D. Manley, Environ. Sci. Water Res. Technol. 2, 565–579 (2016)

    Article  CAS  Google Scholar 

  6. Y. Chu, W. Wang, M. Wang, Anodic oxidation process for the degradation of 2, 4-dichlorophenol in aqueous solution and the enhancement of biodegradability. J. Hazard. Mater. 180(1-3), 247–252 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. I. Sires, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21(14), 8336–8367 (2014)

    Article  CAS  Google Scholar 

  8. C.A. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35(12), 1324–1340 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. H. Jalife-Jacobo, R. Feria-Reyes, O. Serrano-Torres, S. Gutierrez-Granados, J.M. Peralta-Hernandez, Diazo dye Congo Red degradation using a boron-doped diamond anode: an experimental study on the effect of supporting electrolytes. J. Hazard. Mater. 319, 78–83 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. A. Kapalka, G. Foti, C. Comninellis, Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochem. Commun. 10(4), 607–610 (2008)

    Article  CAS  Google Scholar 

  11. N. Katsuki, E. Takahashi, M. Toyoda, T. Kurosu, M. Iida, S. Wakita, Y. Nishiki, T. Shimamune, Water electrolysis using diamond thin-film electrodes. J. Electrochem. Soc. 145(7), 2358–2362 (1998)

    Article  CAS  Google Scholar 

  12. L. Wang, S. Yang, B. Wu, P. Li, Z. Li, Y. Zhao, Electrochim. Acta 206, 270–277 (2016)

    Article  CAS  Google Scholar 

  13. T. Duan, Y. Chen, Q. Wen, Y. Duan, Novel composition graded Ti/Ru–Sb–SnO2 electrode synthesized by selective electrodeposition and its application for electrocatalytic decolorization of dyes. J. Phys. Chem. C 119(14), 7780–7790 (2015)

    Article  CAS  Google Scholar 

  14. C.M. Fan, B. Hua, Y. Wang, Z.H. Liang, X.G. Hao, S.B. Liu, Y.P. Sun, Preparation of Ti/SnO2–Sb2O4 photoanode by electrodeposition and dip coating for PEC oxidations. Desalination 249(2), 736–741 (2009)

    Article  CAS  Google Scholar 

  15. V.K. Gupta, A. Nayak, S. Agarwal, B. Singhal, Comb. Chem. High T. Scr. 14, 284–302 (2011)

    CAS  Google Scholar 

  16. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 5(24), 18438–18450 (2015)

    Article  CAS  Google Scholar 

  17. V.K. Gupta, N. Mergu, L.K. Kumawat, A.K. Singh, A reversible fluorescence “off–on–off” sensor for sequential detection of aluminum and acetate/fluoride ions. Talanta 144, 80–89 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. V.K. Gupta, M.R. Ganjali, P. Norouzi, H. Khani, A. Nayak, S. Agarwal, Electrochemical analysis of some toxic metals by ion–selective electrodes. Crit. Rev. Anal. Chem. 41(4), 282–313 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. V.K. Gupta, H. Karimi-Maleh, R. Sadegh, Int. J. Electrochem. Sci. 10, 303–316 (2015)

    Google Scholar 

  20. V.K. Gupta, A.K. Singh, L.K. Kumawat, Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sensor. Actuators B Chem. 195, 98–108 (2014)

    Article  CAS  Google Scholar 

  21. V.K. Gupta, N. Atar, M.L. Yola, Z. Ustundag, L. Uzun, A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 48, 210–217 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, M. Lutfi, V.K. Gupta, A.A. Ensafi, A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind. Eng. Chem. Res. 54(14), 3634–3639 (2015)

    Article  CAS  Google Scholar 

  23. M.L. Yola, V.K. Gupta, T. Eren, A.E. Sen, N. Atar, A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta 120, 204–211 (2014)

    Article  CAS  Google Scholar 

  24. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109(12), 6541–6569 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. M. Rueffer, D. Bejan, N.J. Bunce, Graphite: an active or an inactive anode? Electrochim. Acta 56(5), 2246–2253 (2011)

    Article  CAS  Google Scholar 

  26. Y.M. Awad, N.S. Abuzaid, Electrochemical oxidation of phenol using graphite anodes. Sep. Sci. Technol. 34(4), 699–708 (1999)

    Article  CAS  Google Scholar 

  27. C.C. Jara, D. Fino, V. Specchia, G. Saracco, R. Spinelli, Electrochemical removal of antibiotics from wastewaters. Appl. Catal. B Environ. 70(1-4), 479–487 (2007)

    Article  CAS  Google Scholar 

  28. A. Uranga-Flores, C. de la Rosa-Juarez, S. Gutierrez-Granados, D.C. de Moura, C.A. Martinez-Huitle, J.M. Peralta Hernandez, Electrochemical promotion of strong oxidants to degrade Acid Red 211: effect of supporting electrolytes. J. Electroanal. Chem. 738, 84–91 (2015)

    Article  CAS  Google Scholar 

  29. A. Thiam, M. Zhou, E. Brillas, I. Sires, Appl. Catal. B Environ. 150, 116–125 (2014)

    Article  CAS  Google Scholar 

  30. C. Carvalho, A. Fernandes, A. Lopes, H. Pinheiro, I. Goncalves, Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment. Chemosphere 67(7), 1316–1324 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. M. Santana, L.A. De Faria, J. Boodts, Electrochemical characterisation and oxygen evolution at a heavily boron doped diamond electrode. Electrochim. Acta 50(10), 2017–2027 (2005)

    Article  CAS  Google Scholar 

  32. A.T. Marshall, L. Valsson-Bethune, Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis. Electrochem. Commun. 61, 23–26 (2015)

    Article  CAS  Google Scholar 

  33. M. Sarno, E. Ponticorvo, Nanotechnology 28 (2017)

  34. J. Jiang, X. Yao, C. Xu, Y. Su, L. Zhou, C. Deng, Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites. Compos. A: Appl. Sci. Manuf. 95, 248–256 (2017)

    Article  CAS  Google Scholar 

  35. K. Rankin, D. Bejan, N.J. Bunce, Electrochemical oxidation of the sulfide ion in synthetic geothermal brines in batch cells using coke electrodes. Ind. Eng. Chem. Res. 49(14), 6261–6266 (2010)

    Article  CAS  Google Scholar 

  36. J. Miao, H. Zhu, Y. Tang, Y. Chen, P. Wan, Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chem. Eng. J. 250, 312–318 (2014)

    Article  CAS  Google Scholar 

  37. G. Zhang, M. Wen, S. Wang, J. Chen, J. Wang, Insights into electrochemical behavior and anodic oxidation processing of graphite matrix in aqueous solutions of sodium nitrate. J. Appl. Electrochem. 46(12), 1163–1176 (2016)

    Article  CAS  Google Scholar 

  38. C. Li, Y. Shi, X. Chen, D. He, L. Shen, N. Bao, Controlled synthesis of graphite oxide: formation process, oxidation kinetics, and optimized conditions. Chem. Eng. Sci. 176, 319–328 (2018)

    Article  CAS  Google Scholar 

  39. D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphite oxide. J. Am. Chem. Soc. 130(32), 10697–10701 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. K.W. Hathcock, J.C. Brumfield, C.A. Goss, E.A. Irene, R.W. Murray, Incipient electrochemical oxidation of highly oriented pyrolytic graphite: correlation between surface blistering and electrolyte anion intercalation. Anal. Chem. 67(13), 2201–2206 (1995)

    Article  CAS  Google Scholar 

  41. Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T.F. Chung, P. Peng, N.P. Guisinger, E.A. Stach, J. Bao, S. Pei, Y.P. Chen, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10(6), 443–449 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006)

  43. M.A. Rabah, N. Nassif, A. Azim, Electrochemical wear of graphite anodes during electrolysis of brine. Carbon 29(2), 165–171 (1991)

    Article  CAS  Google Scholar 

  44. P. Li, J. Hur, Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: a review. Crit. Rev. Environ. Sci. Technol. 47(3), 131–154 (2017)

    Article  CAS  Google Scholar 

  45. B.E. Pape, M.F. Para, M.J. Zabik, Photochemistry of bioactive compounds. Photodecomposition of 2-(1,3-dioxolan-2-yl)phenyl N-methylcarbamate. J. Agric. Food Chem. 18(3), 490–493 (1970)

    Article  CAS  PubMed  Google Scholar 

  46. C. Chen, S. Yang, Y. Guo, C. Sun, C. Gu, B. Xu, Photolytic destruction of endocrine disruptor atrazine in aqueous solution under UV irradiation: products and pathways. J. Hazard. Mater. 172(2-3), 675–684 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. K. Parvez, Z. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Muellen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. C.A. Goss, J.C. Brumfield, E.A. Irene, R.W. Murray, Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite. Anal. Chem. 65(10), 1378–1389 (1993)

    Article  CAS  Google Scholar 

  49. P. Manisankar, C. Rani, S. Viswanathan, Effect of halides in the electrochemical treatment of distillery effluent. Chemosphere 57(8), 961–966 (2004)

    Article  CAS  PubMed  Google Scholar 

  50. B. Bielski, G.G. Shiue, S. Bajuk, Reduction of nitro blue tetrazolium by CO2- and O2- radicals. J. Phys. Chem. 84(8), 830–833 (1980)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (51778013 and 51478014) and Cultivation Fund for Beijing New Century Hundred Thousand and Ten Thousand Talents Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Sun.

Ethics declarations

Competing Interests

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Ren, X., Sun, X. et al. Effect of Supporting Electrolyte on the Surface Corrosion and Anodic Oxidation Performance of Graphite Electrode. Electrocatalysis 10, 549–559 (2019). https://doi.org/10.1007/s12678-019-00541-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00541-6

Keywords

Navigation