Skip to main content

Advertisement

Log in

Mining the roots of various species of the halophyte Suaeda for halotolerant nitrogen-fixing endophytic bacteria with the potential for promoting plant growth

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Saline area may tend to be a productive land; however, many of salt-affected soils have nitrogen limitation and depend on plant-associated diazotrophs as their source of ‘new’ nitrogen. Herein, a total of 316 salinity tolerant nitrogen-fixing endophytic bacteria were isolated from roots of the halophyte Suaeda sp. sampled from 22 different areas of Iran to prepare the collection of nitrogen-fixing bacterial endophytes and evaluate the plant growth–promoting effect of effective isolates on growth of the halophyte Suaeda maritima. All of the identified nitrogen-fixing endophytes were classified to Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes phylum while we did not detect common nitrogen-fixing endophyte of glycophytes like Azospirillum. The genera Pseudomonas and Microbacterium were both encountered in high abundance in all samples, indicating that they might play an advanced role in the micro-ecosystem of the halophyte Suaeda. In addition, the results also showed that not only soil salinity can affect halophyte endophytic composition but also other factors such as geographical location, plant species, and other soil properties may be involved. Interestingly, only Zhihengliuella halotolerans and Brachybacterium sp. belonging to Actinobacteria could grow in semi-solid N-free (NFb) medium supplemented with 6% NaCl and highly enhanced growth of S. maritima in vitro. Overall, this study offers useful new resources for nitrogen-fixing endophytic bacteria which may be utilized to improve approaches for providing bio-fertilizer useful in saline-based agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alishahi F, Alikhani HA, Heidari A, Mohammadi L (2013) The study of inorganic insoluble phosphate solubilization and other plant growth promoting characteristics of indigenous Pseudomonas fluorescence bacteria of Kordan and Gonbad regions. Int J Agron Agric Res 3:53–60

    Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    CAS  PubMed  Google Scholar 

  • Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29(2):379–387

    CAS  PubMed  Google Scholar 

  • Bouillard L, Le Rudulier D (1983) Nitrogen fixation under osmotic stress: enhancement of nitrogenase biosynthesis in Klebsiella pneumoniae by glycine betaine. Physiol Vegetale

  • Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In: Bacteria in agrobiology: disease management. Springer, pp 15-47

  • Brachmann A, Parniske M (2006) The most widespread symbiosis on earth. PLoS Biol 4(7):e239

    PubMed Central  Google Scholar 

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148

    PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol:945–963

  • Flowers T, Yeo A (1986) Ion relations of plants under drought and salinity. Funct Plant Biol 13(1):75–91

    CAS  Google Scholar 

  • Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One 7(7):e42149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gontia I, Kavita K, Schmid M, Hartmann A, Jha B (2011) Brachybacterium saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth-promoting potential. Int J Syst Evol Microbiol 61(12):2799–2804

    CAS  PubMed  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169(1):66–75

    CAS  PubMed  Google Scholar 

  • Hrynkiewicz K, Patz S, Ruppel S (2019) Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs. J Adv Res

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356(1–2):265–277

    CAS  Google Scholar 

  • Jha B, Singh VK, Weiss A, Hartmann A, Schmid M (2015) Zhihengliuella somnathii sp. nov., a halotolerant actinobacterium from the rhizosphere of a halophyte Salicornia brachiata. Int J Syst Evol Microbiol 65(9):3137–3142

    CAS  PubMed  Google Scholar 

  • Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51(1):157–168

    CAS  PubMed  Google Scholar 

  • Kumar M, Etesami H, Kumar V (2019) Saline soil-based agriculture by halotolerant microorganisms. Springer

  • Ladeiro B (2012) Saline agriculture in the 21st century: using salt contaminated resources to cope food requirements. J Bot 2012

  • Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    CAS  PubMed  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276

    CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242–W245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012) Endophytes and their role in phytoremediation. Fungal Divers 54(1):11–18

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee J-S, Lee K-C, Saravanan VS, Santhanakrishnan P (2010) Microbacterium azadirachtae sp. nov., a plant-growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. Int J Syst Evol Microbiol 60(7):1687–1692

    CAS  PubMed  Google Scholar 

  • Mamiatis T, Fritsch E, Sambrook J, Engel J (1985) Molecular cloning–a laboratory manual. New York: Cold Spring Harbor Laboratory. 1982, 545 S., 42$. Acta Biotechnol 5(1):104–104

    Google Scholar 

  • Mukhtar S, Ishaq A, Hassan S, Mehnaz S, Mirza MS, Malik KA (2017) Comparison of microbial communities associated with halophyte (Salsola stocksii) and non-halophyte (Triticum aestivum) using culture-independent approaches. Pol J Microbiol 66(3):353–364

    PubMed  Google Scholar 

  • Niste M, Vidican R, Rotar I, Stoian V, Pop R, Miclea R (2014) Plant nutrition affected by soil salinity and response of rhizobium regarding the nutrients accumulation. ProEnvironment/ProMediu 7(18)

  • Noori F, Etesami H, Zarini HN, Khoshkholgh-Sima NA, Salekdeh GH, Alishahi F (2018) Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotoxicol Environ Saf 162:129–138

    CAS  PubMed  Google Scholar 

  • Okalebo JR, Gathua KW, Woomer PL (2002) Laboratory methods of soil and plant analysis: a working manual second edition. Sacred Africa, Nairobi:21

  • Piernik A, Hrynkiewicz K, Wojciechowska A, Szymańska S, Lis MI, Muscolo A (2017) Effect of halotolerant endophytic bacteria isolated from Salicornia europaea L. on the growth of fodder beet (Beta vulgaris L.) under salt stress. Arch Agron Soil Sci 63(10):1404–1418

    Google Scholar 

  • Pillay V, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43(4):354–361

    CAS  Google Scholar 

  • Qin S, Feng W-W, Zhang Y-J, Wang T-T, Xiong Y-W, Xing K (2018) Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl Environ Microbiol 84(19):e01533–e01518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus 2(1):6

    PubMed  PubMed Central  Google Scholar 

  • Razzaghi Komaresofla B, Alikhani HA, Etesami H, Khoshkholgh-Sima NA (2019) Improved growth and salinity tolerance of the halophyte Salicornia sp. by co–inoculation with endophytic and rhizosphere bacteria. Appl Soil Ecol 138:160–170. https://doi.org/10.1016/j.apsoil.2019.02.022

    Article  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581–1581

    CAS  PubMed  Google Scholar 

  • Reysenbach A-L, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58(10):3417–3418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Llorente ID, Pajuelo E, Navarro-Torre S, Mesa-Marín J, Caviedes MA (2019) Bacterial endophytes from halophytes: how do they help plants to alleviate salt stress? In: Saline soil-based agriculture by halotolerant microorganisms. Springer, pp 147–160

  • Rueda-Puente EO, Bianciotto O, Farmohammadi S, Zakeri O, Elías JL, Hernández-Montiel LG, Bernardo MA (2019) Plant growth-promoting bacteria associated to the halophyte Suaeda maritima (L.) in Abbas, Iran. In: Sabkha Ecosystems. Springer, pp 289–300

  • Ruppel S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct Plant Biol 40(9):940–951

    CAS  PubMed  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9(6):275–280

    CAS  PubMed  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28(3):212–217

    CAS  PubMed  Google Scholar 

  • Shi Y-w, Lou K, Li C, Wang L, Z-y Z, Zhao S, Tian C-y (2015) Illumina-based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada aralocaspica. J Microbiol 53(10):678–685

    CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    CAS  PubMed  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachishypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31(2):195–206

    CAS  Google Scholar 

  • Siddikee MA, Chauhan P, Anandham R, Han G-H, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20(11):1577–1584

    CAS  PubMed  Google Scholar 

  • Sobhanian H, Aghaei K, Komatsu S (2011) Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops? J Proteome 74(8):1323–1337

    CAS  Google Scholar 

  • Song J, Ding X, Feng G, Zhang F (2006) Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions. New Phytol 171(2):357–366

    CAS  PubMed  Google Scholar 

  • Szymańska S, Płociniczak T, Piotrowska-Seget Z, Hrynkiewicz K (2016a) Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L.–community structure and metabolic potential. Microbiol Res 192:37–51

    PubMed  Google Scholar 

  • Szymańska S, Płociniczak T, Piotrowska-Seget Z, Złoch M, Ruppel S, Hrynkiewicz K (2016b) Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiol Res 182:68–79

    PubMed  Google Scholar 

  • Szymańska S, Borruso L, Brusetti L, Hulisz P, Furtado B, Hrynkiewicz K (2018) Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity. Environ Sci Pollut Res 25(25):25420–25431

    Google Scholar 

  • Tian X-Y, Zhang C-S (2017) Illumina-based analysis of endophytic and rhizosphere bacterial diversity of the coastal halophyte Messerschmidia sibirica. Front Microbiol 8:2288

    PubMed  PubMed Central  Google Scholar 

  • Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99(7):2955–2965

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Shiwa Y, Ishige T, Sakamoto H, Tanaka K, Uchino M, Tanaka N, Oguri S, Saitoh H, Tsushima S (2018) Bacterial diversity associated with the rhizosphere and endosphere of two halophytes: Glaux maritima and Salicornia europaea. Front Microbiol 9:2878

    PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, De Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51(3):375–393

    PubMed  Google Scholar 

  • Zhang W, Feng Y (2008) Characterization of nitrogen-fixing moderate halophilic cyanobacteria isolated from saline soils of Songnen Plain in China. Prog Nat Sci 18(6):769–773

    CAS  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid Based Complement Alternat Med 2011

Download references

Acknowledgments

The authors are grateful to Dr. Mohammad Reza Ghaffari, the head of Department of Systems Biology, ABRII, for his support and valuable suggestions.

Funding

This work was supported by the Agriculture Biotechnology Research Institute of Iran (ABRII) (grant numbers 12-05-05-043-93001-961745) and University of Tehran, Karaj, Iran.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding authors

Correspondence to Hossein Ali Alikhani or Hassan Etesami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 463 kb)

ESM 2

(DOC 164 kb)

ESM 3

(DOC 844 kb)

ESM 4

(DOC 41 kb)

ESM 5

(DOC 1154 kb)

ESM 6

(DOC 803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alishahi, F., Alikhani, H.A., Khoshkholgh-Sima, N.A. et al. Mining the roots of various species of the halophyte Suaeda for halotolerant nitrogen-fixing endophytic bacteria with the potential for promoting plant growth. Int Microbiol 23, 415–427 (2020). https://doi.org/10.1007/s10123-019-00115-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-019-00115-y

Keywords

Navigation