Skip to main content
Log in

Formation Conditions of Ferromagnesian Metasomatic Carbonates in the Lower Riphean Terrigenous–Carbonate Rocks of the Southern Urals

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Ferromagnesian carbonate metasomatites in limestones of the Lower Riphean Suran Formation in the Avzyan ore region (Bashkir meganticlinorium) are represented by large Fe-magnesite deposits (e.g., Ismakaevo deposit) and breunnerite stocks (Bogryashka ore occurrence). Metasomatic zonation is manifested as alterations in the series: limestone → dolomite → Fe-magnesite (breunnerite). Fe-magnesite contains up to 8 mol % FeCO3; breunnerite, from 10 to 40 mol % FeCO3. Metasomatic fluid represented the Ca–Na–Mg chloride brine with Fe admixture and was linked with processes of the remobilization of evaporite brines buried in Lower Riphean rocks. Salinity and homogenization temperature of fluid inclusions are: 20–26 wt % equiv NaCl and 200–240°C, respectively, in magnesites; 10–15 wt % equiv NaCl and 140–190°C, respectively, in breunnerites. Interaction of the fluid with terrigenous rocks in a tectonically active zone of the Mashak riftogenic graben ensured the enrichment of brine with different ligands and the accumulation of MREE and HREE in metasomatic products. Upon the migration of fluid across the limestone sequence and its cooling, Fe-magnesite was formed in the frontal zone (Ismakaevo deposit); breunnerite, in the rear zone adjacent to the terrigenous shales (Bogryashka ore occurrence).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Aharon, P., A stable-isotope study of magnesites from the Rum Jungle Uranium Field, Australia: Implications for the origin of strata-bound massive magnesites, Chem. Geol., 1988, vol. 69, pp. 127–145.

    Article  Google Scholar 

  2. Alekseev, A.A., Alekseeva, G.V., and Kovalev, S.G., Differentsirovannye intruzii zapadnogo sklona Urala (Differentiated Intrusions on the Western Slope of the Urals), Ufa: Gilem, 2003.

  3. Anfimov, L.V., Litogenez v rifeiskikh osadochnykh tolshchakh Bashkirskogo megantiklinoriya (Yu. Ural) (Lithogenesis in Riphean Sedimentary Sequences of the Bashkir Meganticlinorium, Sothern Urals), Yekaterinburg: UrO RAN, 1997.

  4. Annovitz, L.M. and Essene, E.J., Phase equilibria in the system CaCO3–MgCO3–FeCO3, J. Petrol., 1987, vol. 28, no. 2, pp. 389–414.

    Article  Google Scholar 

  5. Bau, M. and Moeller, P., Rare-earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite, Mineral. Petrol., 1992, vol. 45, pp. 231–246.

    Article  Google Scholar 

  6. Bodnar, R.J., Revised equation and table for determining the freezing point depression of H2O-NaCl solutions, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 683–684.

    Article  Google Scholar 

  7. Bodnar, R.J. and Vityk, M.O., Interpretation of microthermometric data for H2O–NaCl fluid inclusions, in Fluid Inclusions in Minerals: Methods and Application, De Vivo, B. and Frezzotti, M.L., Eds., Pontignano: Siena, 1994, pp. 281–283.

  8. Borisenko, A.S., The cryometric study of the salt composition of solutions in fluid inclusions in minerals, Geol. Geofiz., 1977, no. 8, pp. 16–27.

  9. Ebner, F., Prochaska, W., Troby, J., et al., Carbonate-hosted sparry magnesite of Greywacke zone, Austria/Eastern Alp, Acta Petrol. Sinica, 2004, vol. 20, pp. 791–802.

    Google Scholar 

  10. Faure, G., Principles of Isotope Geology, New York: Wiley, 1986. Translated under the title Osnovy izotopnoi geologii, Moscow: Mir, 1989.

  11. Filippov, V.A., Formation complexes in the Bashkir meganticlinorium and their metallogeny, Dokl. Akad. Nauk SSSR, 1983, vol. 271, no. 4, pp. 935–938.

    Google Scholar 

  12. Gorozhanin, V.M. and Michurin, S.V., Lithological and isotope-geochemical signs of the evaporitic setting in the Early Riphean, southern Urals, Geol. Izv. Otd. Nauk Zemle Prirodn. Resurs. AN RB, 2008, no. 12, pp. 102–108.

  13. Hurai, V., Lexa, O., Schulmann, K., et al., Mobilization of ore fluids during Alpine metamorphism: evidence from hydrothermal veins in the Variscan basement of Western Carpathians, Slovakia, Geofluids, 2008, vol. 8, pp. 181–207.

    Article  Google Scholar 

  14. Ivanova, T.V., Masagutov, R.Kh., and Andreev, Yu.V., Lithological marker-sequences in Riphean rocks of the platformal Bashkortostan, in Mineral’no-syr’evaya baza Respubliki Bashkortostan: real’nost' i perspektiva (Mineral Commodity Base in Bashkortostan: Reality and Perspectives), Ufa: Tau, 2002, pp. 155–170.

  15. Jiang, S.Y., Chen, C.X., Chen, Y.Q., et al., Geochemistry and genetic model for the giant magnesite deposits in the eastern Liaoning province, China, Acta Petrol. Sinica, 2004, vol. 20, pp. 765–772.

    Google Scholar 

  16. Kah, L.C., Crawford, D.C., Bartley, J.K., et al., C- and Sr-isotope chemostratigraphy as a tool for verifying age of Riphean deposits in the Kama–Belaya Aulacogen, the East European Platform, Stratigr. Geol. Correl., 2007, no. 1, pp. 12–30.

  17. Krupenin, M.T., Usloviya formirovaniya sideritonosnoi bakal’skoi svity nizhnego rifeya (Yuzhnyi Ural) (Formation Conditions of the Lower Riphean Siderite-Bearing Bakal Formation, Southern Urals), Yekaterinburg: UrO RAN, 1999.

  18. Krupenin, M.T. and Garaeva, A.A., Sources of fluids for the metasomatic magnesites in the Ismakaevo deposit, South Ural province (thermocryometry of fluid inclusions), Litosfera, 2015, no. 2, pp. 133–139.

  19. Krupenin, M.T. and Kol’tsov, A.B., Geology, composition, and physicochemical model of sparry magnesite deposits of the Southern Urals, Geol. Ore Deposits, 2017, vol. 59, no. 1, pp. 14–36.

    Article  Google Scholar 

  20. Krupenin, M.T. and Michurin, S.V., Indicator isotope–geochemical characteristics of sulfides from the Satka magnesite ore field (South Urals Province), Dokl. Earth Sci., 2018, vol. 478, no. 1, pp. 108–112.

    Article  Google Scholar 

  21. Krupenin, M.T., Kuznetsov, A.B., Krylov, D.P., and Maslov, A.V., Stable isotopes of carbon and oxygen as indicators of magnesia metasomatosis in the Lower Riphean deposits of the southern Urals, Dokl. Earth Sci., 2011, vol. 439, no. 2, pp. 1122–1126.

    Article  Google Scholar 

  22. Krupenin, M.T., Prochaska, W., and Ronkin, Yu.L., Stagewise formation of fluorites in the Suran deposit (Bashkir meganticlinorium) based on the study of REE, fluid inclusions and Sr–Nd systematics, Litosfera, 2012, no. 5, pp. 126–144.

  23. Krupenin, M.T., Kuznetsov, A.B., and Konstantinova, G.V., Comparative Sr–Nd systematics and REE distribution in typical Lower Riphean magnesite deposits, South Ural province, Litosfera, 2016, no. 5, pp. 58–80.

  24. Krupenin, M.T., Michurin, S.V., Sharipova, A.A., et al., Mineralogical and geochemical features of magnesia-ferruginous carbonates of the Avzyan ore region of the southern Ural in connection with metasomathosis regularities, News Ural State Min. Univ., 2017, vol. 2, pp. 34–42.

    Article  Google Scholar 

  25. Kuznetsov, A.B., Krupenin, M.T., Ovchinnikova, G.V., et al., Diagenesis of carbonate and siderite deposits of the Lower Riphean Bakal Formation, the southern Urals: Sr isotopic characteristics and Pb–Pb age, Lithol. Miner. Resour., 2005, no. 3, pp. 195–216.

  26. Kuznetsov, A.B., Ovchinnikova, G.V., Semikhatov, M.A., et al., The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka Formation, the Lower Riphean Burzyan Group of the southern Urals, Stratigr. Geol. Correl., 2008, vol. 16, no. 2, pp. 120–137.

    Article  Google Scholar 

  27. Larionov, N.N., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 200 000. Yuzhno-Ural’skaya seriya. List N-40-XXII (Tukan) (State Geological Map of the Russian Federation, Scale 1 : 200 000, South Ural Series. Sheet N-40-XXII, Tukan), Ufa: MPR RF, 2003.

  28. Larionov, N.N., Bergazov, I.R., Genina, L.A., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 200 000. List N-40-XXII (ob"yasnitel’naya zapiska) (State Geological Map of the Russian Federation, Scale 1 : 200 000, Sheet N-40-XXII: Explanatory Note), Ufa, 2006.

  29. Makhnach, A.A., Stadial’nyi analiz litogeneza (Stagewise Analysis of Lithogenesis), Minsk: BGU, 2000.

  30. McCaffrey, M.A., Lazar, B., and Holland, H.D., The evaporation path of seawater and the coprecipitation of Br and K+ with halite, J. Sediment. Petrol., 1987, vol. 57, no. 5, pp. 928–937.

    Google Scholar 

  31. Michurin, S.V. and Sharipova, A.A., Isotope-geochemical features of the Bogryashka gold ore occurrence (South Urals), Geol. Sbor., 2015, no. 12, pp. 144–158.

  32. Michurin, S.V., Kovalev, S.G., and Gorozhanin, V.M., Genezis sul’fatov i sul’fidov v nizhnerifeiskikh otlozheniyakh Kamsko-Bel’skogo avlakogena i Bashkirskogo megantiklinoriya (Genesis of Sulfates in Lower Riphean Rocks in the Kama–Bel’sk Aulacogen and Bashkir Meganticlinorium), Ufa: DizainPoligrafServis, 2009.

  33. Morgan, J.W. and Wandless, G.A., Rare earth elements in some hydrothermal minerals: evidence for crystallographic control, Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 973–980.

    Article  Google Scholar 

  34. Nechaev, V.P., Peculiarities of the hydrothermal-metasomatic process at some gold ore occurrences on the western slope of the South Urals, in Voprosy mineralogii, geokhimii i genezisa poleznykh iskopaemykh Yuzhnogo Urala (Issues of Mineralogy, Geochemistry, and Genesis of Mineral Resources in the Southern Urals), Ufa: BFAN SSSR, 1982, pp. 52–56.

  35. Pohl, W., Comparative geology of magnesite deposits and occurrences, in Magnesite – Geology, Mineralogy, Geochemistry, Formation of Mg-Carbonates, Moller, P., Ed., Stuttgart: Gebr. Borntr. Verlag. Sci. Publ., 1989, pp. 1–13.

    Google Scholar 

  36. Popov, V.G., Abdrakhmanov, R.F., and Puchkov, V.N., Geodynamics and geochemistry of processes of density convection in the East European evaporite paleobasin, Litosfera, 2016, no. 3, pp. 47–67.

  37. Prochaska, W., Magnesite and talc deposits in Austria, Miner. Slovaca, 2000, vol. 32, pp. 543–548.

    Google Scholar 

  38. Prochaska, W., Genetic concepts on the formation of the Austrian magnesite and siderite mineralizations in the Eastern Alps of Austria, Geol. Croatica, 2016, vol. 69, no. 1, pp. 31–38.

    Article  Google Scholar 

  39. Prochaska, W. and Krupenin, M.T., Evidence of inclusion fluid chemistry for the formation of magnesite and siderite deposits in the southern Urals, Mineral. Petrol., 2013, vol. 107, no. 1, pp. 53–65.

    Article  Google Scholar 

  40. Puchkov, V.N., Geologiya Urala i Priural’ya (aktual’nye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) (Geology of the Urals and Ural Region: Urgent Issues of Stratigraphy, Tectonics, Geodynamics, and Metallogeny), Ufa: DizainPoligrafServis, 2010.

  41. Radvanec, M. and Prochaska, W., Successive replacement of Upper Carboniferous calcite to dolomite and magnesite in Dubrava magnesite deposit (Western Carpathians, Slovakia), Miner. Slovaca, 2001, vol. 33, pp. 517–525.

    Google Scholar 

  42. Radvanec, M., Kodera, P., and Prochaska, W., Mineralogy, fluid inclusion and C, O, Sr isotope study of the Kosice-Medvedia magnesite deposit, Western Slovakia, Acta Petrol. Sinica, 2004, vol. 20, no. 4, pp. 855–876.

    Google Scholar 

  43. Rosenberg, P.E., Synthetic solid solutions in the systems MgCO3–FeCO3 and MnCO3–FeCO3, Am. Mineral., 1963, vol. 48, nos. 11/12, pp. 1396–1400.

    Google Scholar 

  44. Semikhatov, M.A., Kuznetsov, A.B., Maslov, A.V., et al., Stratotype of the Lower Riphean, the Burzyan Group of the southern Urals: Lithostratigraphy, paleontology, geochronology, Sr- and C-isotopic characteristics of its carbonate rocks, Stratigr. Geol. Correl., 2009, vol. 17, no. 6, pp. 574–601.

    Article  Google Scholar 

  45. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect, 1976, vol. 32, pp. 751–767.

    Article  Google Scholar 

  46. Stratotip rifeya. Stratigrafiya. Geokhronologiya (The Riphean Stratotype: Stratigraphy and Geochronology), Moscow: Nauka, 1983, p. 184.

  47. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell 1985. Translated under the title Kontinental’naya kora, ee sostav i evolyutsiya, Moscow: Mir, 1988.

  48. Urasina, L.P., Drugaleva, T.A., and Smolin, P.P., Glavneishie magnezitovye mestorozhdeniya (Major Magnesite Deposits), Moscow: Nauka, 1993.

Download references

ACKNOWLEDGMENTS

Our thanks go to D.V. Kiseleva and N.V. Cherednichenko (Zavaritskii Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences) for ICP-MS analyses and to O.Yu. Mel’nichuk for help in the geochemical data processing.

This work was accomplished under the State Task Programs of: Zavaritskii Institute of Geology and Geochemistry (project no. AAAA-A18-118052590027-2); Institute of Geology, Ufa Scientific Center, Russian Academy of Sciences (project no. AAAA-A17-117080110034-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. T. Krupenin or S. V. Michurin.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupenin, M.T., Michurin, S.V., Sharipova, A.A. et al. Formation Conditions of Ferromagnesian Metasomatic Carbonates in the Lower Riphean Terrigenous–Carbonate Rocks of the Southern Urals. Lithol Miner Resour 54, 248–261 (2019). https://doi.org/10.1134/S0024490219030040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490219030040

Navigation