Skip to main content
Log in

2.4 Ga Mafic Dikes and Sills of Northern Fennoscandia: Petrology and Crustal Evolution

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

New petrographic, geochemical, and Sm-Nd isotopic data provide constraints on the petrogenesis of ca. 2400 Ma gabbronorite, picrodolerite and dolerite mafic sills and dikes in the Liinakhamari and Sorvaranger areas, Kola–Norwegian terrane, Northern Fennoscandia. The sills are differentiated. Their chilled margins are composed of porphyritic picrodolerite with olivine (Fo92-81) and clinopyroxene (Mg# = 85–80) phenocrysts enclosed by quenched groundmass with intergrows of fan-shaped branched plagioclase grains and clinopyroxenes. The bottom of the sills are usually composed of cumulative olivine gabbronorite upsection followed by olivine gabbro, gabbro, and quartz-bearing dolerites. Picrodolerite and dolerite dikes are close to chilled margins and evolved quartz-bearing dolerites from the upper parts of picrodolerite sills, correspondingly, in terms of mineral and chemical composition. The distribution of trace elements in sills sections is caused by fractionation crystallization of picrodolerite magma with a leading role of gravity settling of olivine phenocrysts. Variations of neodymium isotopic composition in the cumulative gabbronorites in the lower (εNd from –0.25 to +0.82) and dolerites in the upper (εNd from –0.85 to –2.4) parts of the sills are probably related with an addition of crustal contaminant into the magma after phenocrysts crystallization. Doleritic dikes have more radiogenic neodymium isotopic composition (εNd = –0.10) in comparison with dolerites of sills that suggests lower degrees of crustal contamination in dikes. Evaluation of conditions of phenocrysts crystallization using mineral thermobarometers and modelling of crystallization using alphaMELTS indicate that the main stage of the evolution of ca. 2400 Ma mafic melts was probably related with high degrees of fractional crystallization and crustal contamination of high-Mg (MgO ~ 18 wt %) primary melt in the upper crust at P =1–4 kbar. Ca. 2400 Ma mafic intrusions in the Kola–Norwegian terrane are similar with coeval mafic dikes in Troms area in the Northern Fennoscandia, basaltic komatiites of Vetreny Belt and doleritic dikes of Kostomuksha area in the Karelian Craton in terms of petrographic, geochemical and Sm-Nd isotopic characteristics. It suggests that studied mafic sills and dikes in the Kola–Norwegian terrane could be considered as a component of ca. 2400 Ma large igneous province in the Fennoscandia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. Mineral abbreviations: anorthite – An, forsterite – Fo. Magnesian number (Mg# ) of pyroxenes was calculated as Mg/(Mg + Fe), at %. Chromium number (Cr#) of spinels was calculated as Cr/(Cr + Al), at %.

  2. Representative analyses (EPMA, SEM) of olivines from picrodolerite sills and dikes of the Sorvaranger and Liinakhamari areas are given in ESM_1.exl (Suppl. 1); Representative analyses (EPMA, SEM) of clinopyroxenes from picrodolerite sills and picrodolerite and dolerite dikes of the Sorvaranger and Liinakhamari areas are given in ESM_2.xls (Suppl. 2); Representative analyses (EPMA, SEM) of orthopyroxenes from the picrodolerite sills of the Sorvaranger and Liinakhamari areas are given in ESM_3.xls (Suppl. 3); Representative analyses (EPMA) of spinel from the picrodolerite sills and dikes of the Sorvaranger and Liinakhamari areas are given in ESM_4.xls (Suppl. 4); The chemical composition of Paleoproterozoic (2.4 Ga) rocks of the Kola–Norwegian terrane are given in ESM_5.xls (Suppl. 5); The results of modeling of fractional crystallization using alphaMELTS 1.8 are given in ESM_6.xls (Suppl. 6) for the Russian and English on-line versions of the paper are on sites http://elibrary.ru and http://link.springer.com/ , respectively.

REFERENCES

  1. Amelin, Y.V., Heaman, L.M., and Semenov, V.S., U-Pb geochronology of layered mafic intrusions in the Eastern Baltic Shield: implications for the timing and duration of Paleoproterozoic continental rifting, Precambrian Res., 1995, vol. 75, pp. 31–46.

    Google Scholar 

  2. Ariskin, A.A. and Yaroshevsky, A.A., Crystallization differentiation of intrusive magmatic melt: development of a convection–accumulation model, Geochem. Int., 2006, vol. 44, no. 1, pp. 72–93.

    Google Scholar 

  3. Arzamastsev, A.A., Fedotov, Zh.A., and Arzamastseva, L.V., Daikovyi magmatizm severo-vostochnoi chasti Baltiiskogo shchita (Dike Magmatism of Northeastern Baltic Shield), Moscow: Nauka, 2009.

  4. Barley, M.E., Bekker, A., and Krapež, B., Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen, Earth Planet. Sci. Lett., 2005, vol. 238, nos. 1–2, pp. 156–171.

    Google Scholar 

  5. Bayanova, T., Ludden, J., and Mitrofanov, F., Timing and duration of Palaeoproterozoic events producing ore-bearing layered intrusions of the Baltic Shield: metallogenic, petrological and geodynamic implications, Geol. Soc. London: Spec. Publ., 2009, vol. 323, pp. 165–198.

    Google Scholar 

  6. Chauve, C., Dupre, B., and Arndt, N.T., Pb and Nd isotope correlation in Belingwe komatiites and basalts, in The Geology of the Belingwe Greenstone Belt, Zimbabwe, Bickle, M.J. and Nisbet, E.G., Eds., Geol. Soc. Spec. Publ. (Balkema, Rotterdam, 1993), vol. 2, pp. 167–174.

  7. Chashchin, V. V., Bayanova, T. B., and Serov, P. A., Ospe–Luvtuaivench massif of metabasic rocks, Kola Peninsula, Russia: geologic structure and petrogeochemical and isotope geochemical evidence for its relation to the Imandra Complex of layered intrusions, Petrology, 2015, vol. 23, no. 5, pp. 421–450.

    Google Scholar 

  8. Chashchin, V.V., Bayanova, T.B., and Levkovich, N.V., Volcanoplutonic association of the early-stage evolution of the Imandra–Varzuga Rift Zone, Kola Peninsula, Russia: geological, petrogeochemical, and isotope-geochronological data, Petrology, 2008, vol. 16, no. 3, pp. 279–298.

    Google Scholar 

  9. Ciborowski, T.J.R., Kerr, A.C., Mcdonald, I., et al., The geochemistry and petrogenesis of the Paleoproterozoic du Chef dyke swarm, Quebec, Canada, Precambrian Res., 2014, vol. 250, pp. 151–166.

    Google Scholar 

  10. Ciborowski, T.J.R., Kerr, A.C., Ernst, R.E., et al., The early Proterozoic Matachewan large igneous province: geochemistry, petrogenesis, and implications for earth evolution, J. Petrol., 2015, vol. 56, no. 8, pp. 1459–1494.

    Google Scholar 

  11. Condie, K.C., Earth as an Evolving Planetary System, 2nd Edition, Amsterdam: Academic Press, Elsevier, 2011.

    Google Scholar 

  12. Condie, K.C., O’Neill, C., and Aster, R.C., Evidence and implications for a widespread magmatic shutdown for 250 Ma on Earth, Earth Planet. Sci. Lett., 2009, vol. 282, pp. 294–298.

    Google Scholar 

  13. Corrigan, G.M., The crystal morphology of plagioclase feldspar produced during isothermal supercooling and constant rate cooling experiments, Mineral. Mag., 1982, vol. 46, pp. 433–439.

    Google Scholar 

  14. Davies, J.H.F.L. and Heaman, L.M., New U-Pb baddeleyite and zircon ages for the Scourie dyke swarm: a long-lived large igneous province with implications for the Paleoproterozoic evolution of NW Scotland, Precambrian Res., 2014, vol. 249, pp. 180–198.

    Google Scholar 

  15. DePaolo, D.J., Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic, Nature, 1981, vol. 291, pp. 193–196.

    Google Scholar 

  16. Dobrzhinetskaya, L.F., Nordgulen, O., Vetrin, V.R., et al., Correlation of the Archaean rocks between the Sorvaranger area, Norway, and the Kola Peninsula, Russia (Baltic Shield), Nor.Geol. Unders. Spec. Publ., 1995, vol. 7, pp. 7–27.

    Google Scholar 

  17. Fedotov, Zh.A., Correlation of dike complexes in the surrounding of the Pechanga structure and its volcanogenic sequences, Magmatizm, sedimentogenez i geodinamika Pechengskoi paleoriftogennoi struktury (Magmatism, Sedimentogenesis, and Geodynamics of the Pechanga Rift Structure), Mitrofanov, F.P. and Smol’kin, V.F., Eds., Apatity: KNC RAN, 1995, pp. 82–94.

  18. Fedotov, Zh.A., Bayanova, T.B., and Serov, P.A., Spatiotemporal relationships of dike magmatism in the Kola Region, the Fennoscandian Shield, Geotectonics, 2012, vol. 46, no. 6, pp. 412–426.

    Google Scholar 

  19. Frenkel, M.Y., Yaroshevsky, A.A., Ariskin, A.A., et al., Convective-cumulative model simulating the formation process of stratified intrusions, Magma–Crust Interactions and Evolution, Bonin, B., Eds., Athens: Theophrastus Publications, 1989, pp. 3–88.

    Google Scholar 

  20. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Google Scholar 

  21. Heaman, L.M., Global mafic volcanism at 2.45 Ga: remnants of an ancient large igneous province?, Geology, 1997, vol. 25, pp. 299–302.

    Google Scholar 

  22. Herzberg, C., Condie, K., and Korenaga, J., Thermal history of the Earth and its petrological expression, Earth Planet. Sci. Lett., 2010, vol. 292, nos. 1–2, pp. 79–88.

    Google Scholar 

  23. Hölttä, P., Balagansky, V., Garde, A., et al., Archean of Greenland and Fennoscandia, Episodes, 2008, vol. 31, pp. 13–19.

    Google Scholar 

  24. Hughes, H.S.R., McDonald, I., Goodenough, K.M., et al., Enriched lithospheric mantle keel below the Scottish margin of the North Atlantic Craton: evidence from the Palaeoproterozoic Scourie dyke swarm and mantle xenoliths, Precambrian Res., 2014, vol. 250, pp. 97–126.

    Google Scholar 

  25. Kepezhinskas, P.K., Eriksen, G.M.D., and Kepezhinskas, N.P., Geochemistry of ultramafic to mafic rocks in the Norwegian Lapland: inferences on mantle sources and implications for diamond exploration, Earth Sci. Res., 2016, vol. 5, pp. 148–157.

    Google Scholar 

  26. Kullerud, K., Skjerlie, K.P., Corfu, F., et al., The 2.40 Ga Ringvassoy mafic dykes, West Troms basement complex, Norway: the concluding act of early Paleoproterozoic continental breakup, Precambrian Res., 2006, vol. 150, pp. 183–200.

    Google Scholar 

  27. Larionova, Yu.O., Samsonov, A.V., and Shatagin, K.N., Sources of Archean sanukitoids (high-Mg subalkaline granitoids) in the Karelian Craton: Sm-Nd and Rb-Sr isotopic-geochemical evidence, Petrology, 2007, vol. 15, no. 6, pp. 530–550.

    Google Scholar 

  28. Latypov, R.M., The origin of basic-ultrabasic sills with S-, D- and I-shaped compositional profiles by in situ crystallization of a single input of phenocryst-poor parental magma, J. Petrol., 2003, vol. 44, pp. 1619–1656.

    Google Scholar 

  29. Levchenkov, O.A., Levsky, L.K., Nordgulen, O., et al., U-Pb zircon ages from Sorvaranger, Norway, and the western part of the Kola Peninsula, Russia, Nor.Geol. Unders. Spec. Publ., 1995, vol. 7, pp. 29–47.

    Google Scholar 

  30. Marsh, B.D., Solidification fronts and magmatic evolution, Mineral. Mag., 1996, vol. 60, pp. 5–40.

    Google Scholar 

  31. Marsh, B.D., Magmatism, magma, and magma chambers, Treatise on Geophysics, 2nd Ed., Schubert, G. Oxford: Elsevier, 2015, vol. 6, pp. 274–320.

  32. McDonough, W.F. and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, nos. 3–4, pp. 223–253.

    Google Scholar 

  33. Morimoto, N., Fabriès, J., Ferguson, A.K., et al., Nomenclature of pyroxenes, Am. Mineral., 1988, vol. 73, pp. 1123–1133.

    Google Scholar 

  34. Morozov, Yu.A., Galybin, A.N., Mukhamediev, Sh.A., et al., Tectonic and geomechanical control of dikes and sill-like bodies: evidence from the northwestern part of the Kola Peninsula, Geotectonics, 2017, vol. 51, no. 3, pp. 230–258.

    Google Scholar 

  35. Nerovich, L.I., Bayanova, T.B., Serov, P.A., and Elizarov, D.V., Magmatic sources of dikes and veins in the Moncha Tundra Massif, Baltic Shield: isotopic–geochronologic and geochemical evidence, Geochem. Int., 2014, vol. 52, no. 7, pp. 548–566.

    Google Scholar 

  36. Puchtel, I.S., Haase, K.M., Hofmann, A.W., et al., Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 1205–1222.

    Google Scholar 

  37. Puchtel, I.S., Touboul, M., Blichert-Toft, J., et al., Lithophile and siderophile element systematics of earth’s mantle at the Archean–Proterozoic boundary: evidence from 2.4 Ga komatiites, Geochim. Cosmochim. Acta, 2016, vol. 180, pp. 227–255.

    Google Scholar 

  38. Putirka, K.D., Thermometers and barometers for volcanic systems, Rev. Mineral. Geochem., 2008, vol. 69, pp. 61–120.

    Google Scholar 

  39. Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), Glebovitskii, V.A, Eds., St. Petersburg: Nauka, 2005.

  40. Roeder, P.E. and Emslie, R.F., Olivine–liquid equilibrium, Contrib. Mineral. Petrol., 1970, vol. 29, pp. 275–289.

    Google Scholar 

  41. Rudnick, R.L. and Fountain, D.M., Nature and composition of the continental crust: a lower crustal perspective, Rev. Geophys., 1995, vol. 33, pp. 267–309.

    Google Scholar 

  42. Sharkov, E.V., Smol’kin, V.F., and Krassivskaya, I.S., Early Proterozoic igneous province of siliceous high-mg boninite-like rocks in the Eastern Baltic Shield, Petrology, 1997, vol. 5, no. 5, pp. 448–465.

    Google Scholar 

  43. Sharkov, E.V. and Smolkin, V.F., The early Proterozoic Pechenga–Varzuga belt: a case of Precambrian back-arc spreading, Precambrian Res., 1997, vol. 82, pp. 133–151.

    Google Scholar 

  44. Skuf’in, P.K., and Bayanova, T.B., Early Proterozoic central-type volcano in the Pechenga Structure and its relation to the ore-bearing gabbro–wehrlite complex of the Kola Peninsula, Petrology, 2006, vol. 14, no. 6, pp. 609–627.

    Google Scholar 

  45. Smith, P.M. and Asimow, P.D., Adiabat-1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models, Geochem., Geophys., Geosyst., 2005, vol. 6, no. 1. Q02004. https://doi.org/10.1029/2004GC000816

    Article  Google Scholar 

  46. Söderlund, U., Hofmann, A., Klausen, M.B., et al., Towards a complete magmatic barcode for the Zimbabwe Craton: baddeleyite U-Pb dating of regional dolerite dyke swarms and sill complexes, Precambrian Res., 2010, vol. 183, pp. 388–398.

    Google Scholar 

  47. Stepanova, A.V., Samsonov, A.V., Salnikova, E.B., et al., Fragments of Paleoproterozoic lips in Kola–Murmansk and Karelian provinces, Fennoscandia: markers for time span of Lapland–Kola ocean, Abstract for the Goldschmidt Conference, Paris, France, 2017a. URL: https://goldschmidt.info/2017/abstracts/abstractView?id=2017003158. p. 2017.

  48. Stepanova, A.V., Salnikova, E.B., Samsonov, A.V., et al., The 2405 Ma doleritic dykes in the Karelian Craton: a fragment of a Paleoproterozoic large igneous province, Dokl. Earth Sci., 2017b, vol. 472, pp. 72–77.

    Google Scholar 

  49. Stevens, R.E., Composition of some chromites of the western hemisphere, Am. Mineral., 1944, vol. 29, pp. 1–34.

    Google Scholar 

  50. Svetov, S.A., Stepanova, A.V., Chazhengina, S.Yu., et al., Precision (ICP-MS, LA ICP-MS) analysis of rocks and minerals: technique and estimation of result accuracy by the example of the Early Precambrian mafic complexes, KarNTs RAN. Ser. Geol. Dokembriya, 2015, no. 7, pp. 54–73.

  51. Tait, S. and Jaupart, C., The production of chemically stratified and adcumulate plutonic igneous rocks, Mineral. Mag., 1996, vol. 60, pp. 99–144.

    Google Scholar 

  52. Timmerman, M. and Daly, J.S., Sm-Nd evidence for late Archaean crust formation in the Lapland–Kola mobile belt, Kola Peninsula, Russia and Norway, Precambrian Res., 1995, vol. 72, pp. 97–107.

    Google Scholar 

  53. Ubide, T., Arranz, E., Lago, M., et al., The influence of crystal settling on the compositional zoning of a thin lamprophyre sill: a multi-method approach, Lithos, 2012, vol. 132–133, pp. 37–49.

    Google Scholar 

  54. Wedepohl, K.H. and Hartmann, G., The composition of the primitive upper earth’s mantle, Kimberlites, Related Rocks and Mantle Xenoliths, Meyer, H.O.A. and Leonardos, O.H., Eds., Companhia de Pesquisa de Recursos Minerais. Rio de Janeiro, 1994, no. 1, pp. 486–495.

  55. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, no. 1, pp. 185–187.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Yu.A. Morozov (IFZ RAS) for the discussion of geological data on the mafic dikes and sills of the Liinakhamari area. P.A. Kepezhinskas, AS Kimberlitte, Norway, and I.S. Puchtel, Department of Geology, University of Maryland, USA, are thanked for their help field works in Norway. We also thank the reviewers, A.V. Girnis and A.A. Nosova, whose critical comments significantly improved the manuscript.

The study was supported by the Russian Science Foundation (project no. 16-17-10260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Erofeeva.

Additional information

Translated by M. Bogina

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erofeeva, K.G., Stepanova, A.V., Samsonov, A.V. et al. 2.4 Ga Mafic Dikes and Sills of Northern Fennoscandia: Petrology and Crustal Evolution. Petrology 27, 17–42 (2019). https://doi.org/10.1134/S0869591119010016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591119010016

Keywords:

Navigation